# AP Statistics Curriculum 2007 Bayesian Hierarchical

### From Socr

Line 1: | Line 1: | ||

==[[EBook | Probability and Statistics Ebook]] - Bayesian Hierarchical Models== | ==[[EBook | Probability and Statistics Ebook]] - Bayesian Hierarchical Models== | ||

- | Sometimes we cannot be sure about the factuality of our prior knowledge. Often we make one or more assumptions about the relationships between the different unknown parameters <math>\theta</math> from which observations x has density p(x|<math>\theta</math>). These associations are sometimes referred to as ''structural''. In some cases the structural prior knowledge is combined with a standard form of Bayesian prior belief about the parameters of the structure. In the case where <math>\theta_i</math> are independently and identically distributed, their common distribution might depend on a parameter <math>\eta</math> which we refer to as a hyperparameter | + | Sometimes we cannot be sure about the factuality of our prior knowledge. Often we make one or more assumptions about the relationships between the different unknown parameters <math>\theta</math> from which observations x has density p(x|<math>\theta</math>). These associations are sometimes referred to as ''structural''. In some cases the structural prior knowledge is combined with a standard form of Bayesian prior belief about the parameters of the structure. In the case where <math>\theta_i</math> are independently and identically distributed, their common distribution might depend on a parameter <math>\eta</math> which we refer to as a hyperparameter. When the <math>\eta</math> is unknown we have a second tier in which we suppose to have a hyperprior p(<math>\eta</math>) expressing our beliefs about possible values of <math>\eta</math>. In such a case we may say that we have a hierarchical model. |

==Idea of a Hierarchical Model== | ==Idea of a Hierarchical Model== |

## Current revision as of 21:10, 28 June 2010

## Contents |

## Probability and Statistics Ebook - Bayesian Hierarchical Models

Sometimes we cannot be sure about the factuality of our prior knowledge. Often we make one or more assumptions about the relationships between the different unknown parameters θ from which observations x has density p(x|θ). These associations are sometimes referred to as *structural*. In some cases the structural prior knowledge is combined with a standard form of Bayesian prior belief about the parameters of the structure. In the case where θ_{i} are independently and identically distributed, their common distribution might depend on a parameter η which we refer to as a hyperparameter. When the η is unknown we have a second tier in which we suppose to have a hyperprior p(η) expressing our beliefs about possible values of η. In such a case we may say that we have a hierarchical model.

## Idea of a Hierarchical Model

## Hierarchical Normal Model

## Stein Estimator

## Bayesian analysis for unknown overall mean

## See also

## References

- SOCR Home page: http://www.socr.ucla.edu

Translate this page: