# AP Statistics Curriculum 2007 Beta

### From Socr

(→Beta Distribution) |
|||

(One intermediate revision not shown) | |||

Line 1: | Line 1: | ||

+ | ==[[AP_Statistics_Curriculum_2007 | General Advance-Placement (AP) Statistics Curriculum]] - Beta Distribution== | ||

+ | |||

===Beta Distribution=== | ===Beta Distribution=== | ||

'''Definition''': Beta distribution is a distribution that models events which are constrained to take place within an interval defined by a minimum and maximum value. | '''Definition''': Beta distribution is a distribution that models events which are constrained to take place within an interval defined by a minimum and maximum value. | ||

Line 46: | Line 48: | ||

The figure below shows this result using [http://socr.ucla.edu/htmls/dist/Beta_Distribution.html SOCR distributions] | The figure below shows this result using [http://socr.ucla.edu/htmls/dist/Beta_Distribution.html SOCR distributions] | ||

<center>[[Image:Beta.jpg|600px]]</center> | <center>[[Image:Beta.jpg|600px]]</center> | ||

+ | |||

+ | <hr> | ||

+ | * SOCR Home page: http://www.socr.ucla.edu | ||

+ | |||

+ | {{translate|pageName=http://wiki.stat.ucla.edu/socr/index.php/AP_Statistics_Curriculum_2007_Beta}} |

## Current revision as of 22:35, 18 July 2011

## Contents |

## General Advance-Placement (AP) Statistics Curriculum - Beta Distribution

### Beta Distribution

**Definition**: Beta distribution is a distribution that models events which are constrained to take place within an interval defined by a minimum and maximum value.

**Probability density function**: For , the Beta probability density function is given by

where

- α is a positive shape parameter
- β is a positive shape parameter
- or

, where - x is a random variable

**Cumulative density function**: Beta cumulative distribution function is given by

where

**Moment generating function**: The Beta moment-generating function is

**Expectation**: The expected value of a Beta distributed random variable x is

**Variance**: The Beta variance is

### Applications

The Beta distribution is used in a range of disciplines including rule of succession, Bayesian statistics, and task duration modeling. Examples of events that may be modeled by Beta distribution include:

- The time it takes to complete a task
- The proportion of defective items in a shipment

### Example

Suppose that DVDs in a certain shipment are defective with a Beta distribution with α = 2 and β = 5. Compute the probability that the shipment has 20% to 30% defective DVDs.

We can compute this as follows:

The figure below shows this result using SOCR distributions

- SOCR Home page: http://www.socr.ucla.edu

Translate this page: