# AP Statistics Curriculum 2007 Estim MOM MLE

(Difference between revisions)
 Revision as of 02:45, 30 March 2008 (view source)IvoDinov (Talk | contribs) (New page: == General Advance-Placement (AP) Statistics Curriculum - Method of Moments and Maximum Likelihood Estimation== Suppose we flip a coin 8 times and obser...)← Older edit Revision as of 02:46, 30 March 2008 (view source)IvoDinov (Talk | contribs) Newer edit → Line 18: Line 18: ** The first [[AP_Statistics_Curriculum_2007_Distrib_MeanVar#Higher_Moments |sample-moment]] for a [[AP_Statistics_Curriculum_2007_Distrib_Binomial |Binomial process]] is p=E(X). Therefore, if the [[EBook#Random_Variables |random variable]] ''X = {# H’s}'', then ''np=8p=E(X)= Sample#H’s = 5'' , which yeields that the first sample moment is $\hat{p}={5\over 8}$. Hence, we would estimate the uknown $p=P(H) \approx MOM(p)=\hat{p}={5\over 8}$. ** The first [[AP_Statistics_Curriculum_2007_Distrib_MeanVar#Higher_Moments |sample-moment]] for a [[AP_Statistics_Curriculum_2007_Distrib_Binomial |Binomial process]] is p=E(X). Therefore, if the [[EBook#Random_Variables |random variable]] ''X = {# H’s}'', then ''np=8p=E(X)= Sample#H’s = 5'' , which yeields that the first sample moment is $\hat{p}={5\over 8}$. Hence, we would estimate the uknown $p=P(H) \approx MOM(p)=\hat{p}={5\over 8}$. - * Experimental Solution: We can also use [http://socr.ucla.edu/htmls/SOCR_Experiments.html SOCR Experiments] to demonstrate the MOM estimation technique. You can refer to the [[SOCR_EduMaterials_Activities_CoinSampleExperiment | SOCR Coin Sample Experiment]] for more information of this SOCR applet. The The figure below illustrates flipping a coin 8 times and observing 5 Heads.  This is a [[AP_Statistics_Curriculum_2007_Distrib_Binomial | Binomial(n=8, p=0.65)]] distribution. However, let's pretend for a minute that we did '''not''' know the actual ''p=P(H)'' value! So we have a good approximation $0.65=p=P(H) \approx MOM(p)=\hat{p}={5\over 8}=0.625. Of course, if we run this experiment again, our MOM estimate for ''p'' would change! + * Experimental Solution: We can also use [http://socr.ucla.edu/htmls/SOCR_Experiments.html SOCR Experiments] to demonstrate the MOM estimation technique. You can refer to the [[SOCR_EduMaterials_Activities_CoinSampleExperiment | SOCR Coin Sample Experiment]] for more information of this SOCR applet. The The figure below illustrates flipping a coin 8 times and observing 5 Heads. This is a [[AP_Statistics_Curriculum_2007_Distrib_Binomial | Binomial(n=8, p=0.65)]] distribution. However, let's pretend for a minute that we did '''not''' know the actual ''p=P(H)'' value! So we have a good approximation [itex]0.65=p=P(H) \approx MOM(p)=\hat{p}={5\over 8}=0.625$. Of course, if we run this experiment again, our MOM estimate for ''p'' would change!
[[Image:SOCR_EBook_Dinov_Estimates_MOM_MLE_032808_Fig1.jpg|400px]]
[[Image:SOCR_EBook_Dinov_Estimates_MOM_MLE_032808_Fig1.jpg|400px]]

## General Advance-Placement (AP) Statistics Curriculum - Method of Moments and Maximum Likelihood Estimation

Suppose we flip a coin 8 times and observe the number of heads (successes) in the outcomes. How would we estimate the true (unknown) probability of a Head (P(H)=?) for this specific coin? There are a number of other similar situations where we need to evaluate, predict or estimate a population (or process) parameter of interest using an observed data sample.

There are many ways to obtain point (value) estimates of various population parameters of interest, using observed data from the specific process we study. The method of moments and the maximum likelihood estimation are among the most popular ones frequently used in practice.

### Method of Moments (MOM) Estimation

Parameter estimation using the method of moments is both intuitive and easy to calculate. The idea is to use the sample data to calculate some sample moments and then set these equal to their corresponding population counterparts. Typically the latter involve the parameter(s) that we are interested in estimating and thus we obtain a computationally tractable protocol for their estimation. Summarizing the MOM:

• First: Determine the k parameters of interest and the specific (model) distribution for this process;
• Second: Compute the first k (or more) sample-moments;
• Third: Set the sample-moments equal to the population moments and solve a (linear or non-linear) system of k equations with k unknowns.

#### MOM Proportion Example

Let's look at the motivational problem we discussed above. We want to flip a coin 8 times, observe the number of heads (successes) in the outcomes and use that to inffer the true (unknown) probability of a Head (P(H)=?) for this specific coin.

• Hypothetical solution: Suppose we observe the following sequence of outcomes {T,H,T,H,H,T,H,H}. Using the MOM protocol we obtain:
• There is one parameter of interest p=P(H) and the process is a Binomial experiment.
• The first sample-moment for a Binomial process is p=E(X). Therefore, if the random variable X = {# H’s}, then np=8p=E(X)= Sample#H’s = 5 , which yeields that the first sample moment is $\hat{p}={5\over 8}$. Hence, we would estimate the uknown $p=P(H) \approx MOM(p)=\hat{p}={5\over 8}$.
• Experimental Solution: We can also use SOCR Experiments to demonstrate the MOM estimation technique. You can refer to the SOCR Coin Sample Experiment for more information of this SOCR applet. The The figure below illustrates flipping a coin 8 times and observing 5 Heads. This is a Binomial(n=8, p=0.65) distribution. However, let's pretend for a minute that we did not know the actual p=P(H) value! So we have a good approximation $0.65=p=P(H) \approx MOM(p)=\hat{p}={5\over 8}=0.625$. Of course, if we run this experiment again, our MOM estimate for p would change!