# AP Statistics Curriculum 2007 Estim Proportion

(Difference between revisions)
 Revision as of 05:10, 4 February 2008 (view source)IvoDinov (Talk | contribs) (→Estimating a Population Proportion)← Older edit Revision as of 05:32, 4 February 2008 (view source)IvoDinov (Talk | contribs) Newer edit → Line 17: Line 17: :$\tilde{p}\pm z_{\alpha\over 2} SE_{\tilde{p}}$ :$\tilde{p}\pm z_{\alpha\over 2} SE_{\tilde{p}}$ - ===Model Validation=== + ===Example=== - Checking/affirming underlying assumptions. + Suppose a researcher is interested in studying the effect of aspirin in reducing heart attacks. He randomly recruits 500 subjects with evidence of early heart disease and has them take one aspirin daily for two years.  At the end of the two years he finds that during the study only 17 subjects had a heart attack. Calculate a 95% ($\alpha=0.05) confidence interval for the true (unknown) proportion of subjects with early heart disease that have a heart attack while taking aspirin daily. Note that [[AP_Statistics_Curriculum_2007_Normal_Critical | [itex]z_{\alpha \over 2} = z_{0.025}=1.96$]]: - * TBD + : $\hat{p} = {17\over 500}=0.034$ ; $\tilde{p} = {17+0.5z_{0.025}^2\over 500+z_{0.025}^2}== {17+1.92\over 500+3.84}=0.038$ - ===Computational Resources: Internet-based SOCR Tools=== + : $SE_{\hat{p}}= \sqrt{0.034(1-0.034)\over 500}=0.0036$; $SE_{\tilde{p}}= \sqrt{0.038(1-0.038)\over 500+3.84}=0.0085$ - * TBD + - ===Examples=== + And the corresponding confidence intervals are given by - Computer simulations and real observed data. + : $\hat{p}\pm 1.96 SE_{\hat{p}}=[0.026944, 0.041056]$ - * TBD + : $\tilde{p}\pm 1.96 SE_{\tilde{p}}=[0.0213, 0.0547]$ - + - ===Hands-on activities=== + - Step-by-step practice problems. + - + - * TBD +

## General Advance-Placement (AP) Statistics Curriculum - Estimating a Population Proportion

### Estimating a Population Proportion

When the sample size is large, the sampling distribution of the sample proportion $\hat{p}$ is approximately Normal, by CLT, as the sample proportion may be presented as a sample average or Bernoulli random variables. When the sample size is small, the normal approximation may be inadequate. To accommodate this we will modify the sample-proportion $\hat{p}$ slightly and obtain the corrected-sample-proportion $\tilde{p}$:

$\hat{p}={y\over n} \longrightarrow \tilde{y}={y+0.5z_{\alpha \over 2}^2 \over n+z_{\alpha \over 2}^2},$

The standard error of $\hat{p}$ also needs a slight modification

$SE_{\hat{p}} = \sqrt{\hat{p}(1-\hat{p})\over n} \longrightarrow SE_{\tilde{p}} = \sqrt{\tilde{p}(1-\tilde{p})\over n+z_{\alpha \over 2}^2}.$

### Confidence intervals for proportions

The confidence intervals for the sample proportion $\hat{p}$ and the corrected-sample-proportion $\tilde{p}$ are given by

$\hat{p}\pm z_{\alpha\over 2} SE_{\hat{p}}$
$\tilde{p}\pm z_{\alpha\over 2} SE_{\tilde{p}}$

### Example

Suppose a researcher is interested in studying the effect of aspirin in reducing heart attacks. He randomly recruits 500 subjects with evidence of early heart disease and has them take one aspirin daily for two years. At the end of the two years he finds that during the study only 17 subjects had a heart attack. Calculate a 95% (α = 0.05) confidence interval for the true (unknown) proportion of subjects with early heart disease that have a heart attack while taking aspirin daily. Note that $z_{\alpha \over 2} = z_{0.025}=1.96$:

$\hat{p} = {17\over 500}=0.034$ ; $\tilde{p} = {17+0.5z_{0.025}^2\over 500+z_{0.025}^2}== {17+1.92\over 500+3.84}=0.038$
$SE_{\hat{p}}= \sqrt{0.034(1-0.034)\over 500}=0.0036$; $SE_{\tilde{p}}= \sqrt{0.038(1-0.038)\over 500+3.84}=0.0085$

And the corresponding confidence intervals are given by

$\hat{p}\pm 1.96 SE_{\hat{p}}=[0.026944, 0.041056]$
$\tilde{p}\pm 1.96 SE_{\tilde{p}}=[0.0213, 0.0547]$

• TBD