# AP Statistics Curriculum 2007 Estim Proportion

Jump to: navigation, search

## General Advance-Placement (AP) Statistics Curriculum - Estimating a Population Proportion

### Estimating a Population Proportion

When the sample size is large, the sampling distribution of the sample proportion $\hat{p}$ is approximately Normal, by CLT, as the sample proportion may be presented as a sample average or Bernoulli random variables. When the sample size is small, the normal approximation may be inadequate. To accommodate this we will modify the sample-proportion $\hat{p}$ slightly and obtain the corrected-sample-proportion $\tilde{p}$:

$\hat{p}={y\over n} \longrightarrow \tilde{y}={y+0.5z_{\alpha \over 2}^2 \over n+z_{\alpha \over 2}^2},$

The standard error of $\hat{p}$ also needs a slight modification

$SE_{\hat{p}} = \sqrt{\hat{p}(1-\hat{p})\over n} \longrightarrow SE_{\tilde{p}} = \sqrt{\tilde{p}(1-\tilde{p})\over n+z_{\alpha \over 2}^2}.$

### Confidence intervals for proportions

The confidence intervals for the sample proportion $\hat{p}$ and the corrected-sample-proportion $\tilde{p}$ are given by

$\hat{p}\pm z_{\alpha\over 2} SE_{\hat{p}}$
$\tilde{p}\pm z_{\alpha\over 2} SE_{\tilde{p}}$

### Model Validation

Checking/affirming underlying assumptions.

• TBD

• TBD

### Examples

Computer simulations and real observed data.

• TBD

### Hands-on activities

Step-by-step practice problems.

• TBD

### References

• TBD

Translate this page: