AP Statistics Curriculum 2007 GLM MultLin

From Socr

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
==[[AP_Statistics_Curriculum_2007 | General Advance-Placement (AP) Statistics Curriculum]] - Multiple Linear Regression ==
==[[AP_Statistics_Curriculum_2007 | General Advance-Placement (AP) Statistics Curriculum]] - Multiple Linear Regression ==
-
In the previous sections we saw how to study the relations in bivariate designs. Now we extend that to any finite number of varaibles (mulitvariate case).
+
In the [[AP_Statistics_Curriculum_2007#Chapter_X:_Correlation_and_Regression | previous sections]] we saw how to study the relations in bivariate designs. Now we extend that to any finite number of variables (multivariate case).
=== Multiple Linear Regression ===
=== Multiple Linear Regression ===
Line 16: Line 16:
is still one of '''linear''' regression, that is, linear in <math>x</math> and <math>x^2</math> respectively, even though the graph on <math>x</math> by itself is not a straight line.   
is still one of '''linear''' regression, that is, linear in <math>x</math> and <math>x^2</math> respectively, even though the graph on <math>x</math> by itself is not a straight line.   
-
===Approach===
+
===Parameter Estimation in Multilinear Regression===
-
Models & strategies for solving the problem, data understanding & inference.
+
A multilinear regression with ''p'' coefficients and the regression intercept β<sub>0</sub> and ''n'' data points (sample size), with <math>n\geq (p+1) </math> allows construction of the following vectors and matrix with associated standard errors:
-
* TBD
+
:<math> \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix} + \begin{bmatrix} \varepsilon_1\\ \varepsilon_2\\ \vdots\\ \varepsilon_n \end{bmatrix} </math>
-
===Model Validation===
+
or, in '''vector-matrix notation'''
-
Checking/affirming underlying assumptions.
+
-
* TBD
+
:<math> \ y =  \mathbf{X}\cdot\beta + \varepsilon.\, </math>
 +
Each data point can be given as <math>(\vec x_i, y_i)</math>, <math>i=1,2,\dots,n.</math>. For n = p, standard errors of the parameter estimates could not be calculated. For n less than p, parameters could not be calculated.
-
===Computational Resources: Internet-based SOCR Tools===
+
* '''Point Estimates''': The estimated values of the parameters <math>\beta_i</math> are given as
-
* TBD
+
:<math>\widehat{\beta} </math><math>=(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T {\vec y}</math>
 +
 
 +
* '''Residuals''': The residuals, representing the difference between the observations and the model's predictions, are required to analyse the regression and are given by:
 +
 
 +
:<math>\hat\vec\varepsilon = \vec y - \mathbf{X} \hat\beta\,</math>
 +
 
 +
The standard deviation, <math>\hat \sigma </math> for the model is determined from
 +
 
 +
:<math> {\hat \sigma  = \sqrt{ \frac {\hat\vec\varepsilon^T \hat\vec\varepsilon} {n-p-1}} = \sqrt {\frac{{  \vec y^T  \vec y -  \hat\vec\beta^T \mathbf{X}^T  \vec y}}{{n - p - 1}}} }  </math>
 +
 
 +
The variance in the errors is Chi-square distributed:
 +
:<math>\hat\sigma^2 \sim \frac { \chi_{n-p-1}^2 \ \sigma^2 } {n-p-1}</math>
 +
 
 +
* '''Interval Estimates''': The <math>100(1-\alpha)% </math> [[AP_Statistics_Curriculum_2007#Chapter_VII:_Point_and_Interval_Estimates | confidence interval]] for the parameter, <math>\beta_i </math>, is computed as follows:
 +
 
 +
:<math> {\widehat \beta_i  \pm t_{\frac{\alpha }{2},n - p - 1} \hat \sigma \sqrt {(\mathbf{X}^T \mathbf{X})_{ii}^{ - 1} } }  </math>,
 +
 
 +
where ''t'' follows the [[AP_Statistics_Curriculum_2007_StudentsT | Student's t-distribution]] with <math>n-p-1</math> degrees of freedom and <math> (\mathbf{X}^T \mathbf{X})_{ii}^{ - 1}</math> denotes the value located in the <math>i^{th}</math> row and column of the matrix.
 +
 
 +
The '''regression sum of squares''' (or sum of squared residuals) ''SSR'' (also commonly called ''RSS'') is given by:
 +
 
 +
:<math> {\mathit{SSR} = \sum {\left( {\hat y_i  - \bar y} \right)^2 }  =   \hat\beta^T \mathbf{X}^T  \vec y - \frac{1}{n}\left( {  \vec y^T  \vec u  \vec u^T  \vec y} \right)}  </math>,
 +
 
 +
where <math> \bar y = \frac{1}{n} \sum y_i</math> and <math>  \vec u </math> is an ''n'' by 1 unit vector (i.e. each element is 1). Note that the terms <math>y^T u</math> and <math>u^T y</math> are both equivalent to <math>\sum y_i</math>, and so the term <math>\frac{1}{n} y^T u u^T y</math> is equivalent to <math>\frac{1}{n}\left(\sum y_i\right)^2</math>.
 +
 
 +
The '''error''' (or explained)''' sum of squares''' (''ESS'') is given by:
 +
 
 +
:<math> {\mathit{ESS} = \sum {\left( {y_i  - \hat y_i } \right)^2 }  =  \vec y^T  \vec y -  \hat\beta^T \mathbf{X}^T  \vec y}. </math>
 +
 
 +
The '''total sum of squares''' ('''TSS''') is given by
 +
 
 +
:<math> {\mathit{TSS} = \sum {\left( {y_i  - \bar y} \right)^2 }  =  \vec y^T  \vec y - \frac{1}{n}\left( {  \vec y^T  \vec u  \vec u^T  \vec y} \right) = \mathit{SSR}+ \mathit{ESS}}. </math>
===Examples===
===Examples===
-
Computer simulations and real observed data.  
+
In the [[AP_Statistics_Curriculum_2007_GLM_Regress | simple linear regression case]], we were able to compute by hand some (simple) examples). Such calculations are much more involved in the multilinear regression situations. Thus we demonstrate multilinear regression only using the [http://socr.ucla.edu/htmls/SOCR_Analyses.html SOCR Multiple Regression Analysis Appet].
 +
 
 +
Use the SOCR California Earthquake dataset to investigate whether Earthquake magnitude (dependent variable) can be predicted by knowing the longitude, latitude, distance and depth of the quake. Clearly, we do not expect these predictors to have a strong effect on the earthquake magnitude, so we expect the coefficient parameters not to be significantly distinct from zero (null hypothesis). SOCR Multilinear regression applet reports this model:
 +
 
 +
:  <math>Magnitude = \beta_o + \beta_1\times Close+ \beta_2\times Depth+ \beta_3\times Longitude+ \beta_4\times Latitude + \varepsilon.</math>
 +
 
 +
:  <math>Magnitude = 2.320 + 0.001\times Close -0.003\times Depth -0.035\times Longitude -0.028\times Latitude + \varepsilon.</math>
-
* TBD
+
<center>[[Image:SOCR_EBook_Dinov_GLM_MLR_021808_Fig1.jpg|500px]]
-
+
[[Image:SOCR_EBook_Dinov_GLM_MLR_021808_Fig2.jpg|500px]]</center>
-
===Hands-on activities===
+
-
Step-by-step practice problems.  
+
-
* TBD
 
<hr>
<hr>
===References===
===References===
-
* TBD
 
<hr>
<hr>

Revision as of 01:12, 19 February 2008

Contents

General Advance-Placement (AP) Statistics Curriculum - Multiple Linear Regression

In the previous sections we saw how to study the relations in bivariate designs. Now we extend that to any finite number of variables (multivariate case).

Multiple Linear Regression

We are interested in determining the linear regression, as a model, of the relationship between one dependent variable Y and many independent variables Xi, i = 1, ..., p. The multilinear regression model can be written as

Y = \beta_0  + \beta_1 X_1 + \beta_2 X_2 +  \cdots +\beta_p X_p + \varepsilon, where \varepsilon is the error term.

The coefficient β0 is the intercept ("constant" term) and βis are the respective parameters of the p independent variables. There are p+1 parameters to be estimated in the multilinear regression.

  • Multilinear vs. non-linear regression: This multilinear regression method is "linear" because the relation of the response (the dependent variable Y) to the independent variables is assumed to be a linear function of the parameters βi. Note that multilinear regression is a linear modeling technique not because is that the graph of Y = β0 + βx is a straight line nor because Y is a linear function of the X variables. But the "linear" terms refers to the fact that Y can be considered a linear function of the parameters ( βi), even though it is not a linear function of X. Thus, any model like
Y = \beta_o + \beta_1 x + \beta_2 x^2 + \varepsilon

is still one of linear regression, that is, linear in x and x2 respectively, even though the graph on x by itself is not a straight line.

Parameter Estimation in Multilinear Regression

A multilinear regression with p coefficients and the regression intercept β0 and n data points (sample size), with n\geq (p+1) allows construction of the following vectors and matrix with associated standard errors:

 \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix} + \begin{bmatrix} \varepsilon_1\\ \varepsilon_2\\ \vdots\\ \varepsilon_n \end{bmatrix}

or, in vector-matrix notation

 \ y =  \mathbf{X}\cdot\beta + \varepsilon.\,

Each data point can be given as (\vec x_i, y_i), i=1,2,\dots,n.. For n = p, standard errors of the parameter estimates could not be calculated. For n less than p, parameters could not be calculated.

  • Point Estimates: The estimated values of the parameters βi are given as
\widehat{\beta} =(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T {\vec y}
  • Residuals: The residuals, representing the difference between the observations and the model's predictions, are required to analyse the regression and are given by:
\hat\vec\varepsilon = \vec y - \mathbf{X} \hat\beta\,

The standard deviation, \hat \sigma for the model is determined from

 {\hat \sigma  = \sqrt{ \frac {\hat\vec\varepsilon^T \hat\vec\varepsilon} {n-p-1}} = \sqrt {\frac{{  \vec y^T  \vec y -   \hat\vec\beta^T \mathbf{X}^T   \vec y}}{{n - p - 1}}} }

The variance in the errors is Chi-square distributed:

\hat\sigma^2 \sim \frac { \chi_{n-p-1}^2 \ \sigma^2 } {n-p-1}
  • Interval Estimates: The 100(1 − α)% confidence interval for the parameter, βi, is computed as follows:
 {\widehat \beta_i  \pm t_{\frac{\alpha }{2},n - p - 1} \hat \sigma \sqrt {(\mathbf{X}^T \mathbf{X})_{ii}^{ - 1} } }  ,

where t follows the Student's t-distribution with np − 1 degrees of freedom and  (\mathbf{X}^T \mathbf{X})_{ii}^{ - 1} denotes the value located in the ith row and column of the matrix.

The regression sum of squares (or sum of squared residuals) SSR (also commonly called RSS) is given by:

 {\mathit{SSR} = \sum {\left( {\hat y_i  - \bar y} \right)^2 }  =   \hat\beta^T \mathbf{X}^T   \vec y - \frac{1}{n}\left( {  \vec y^T   \vec u  \vec u^T   \vec y} \right)}  ,

where  \bar y = \frac{1}{n} \sum y_i and   \vec u is an n by 1 unit vector (i.e. each element is 1). Note that the terms yTu and uTy are both equivalent to \sum y_i, and so the term \frac{1}{n} y^T u u^T y is equivalent to \frac{1}{n}\left(\sum y_i\right)^2.

The error (or explained) sum of squares (ESS) is given by:

 {\mathit{ESS} = \sum {\left( {y_i  - \hat y_i } \right)^2 }  =   \vec y^T   \vec y -   \hat\beta^T \mathbf{X}^T   \vec y}.

The total sum of squares (TSS) is given by

 {\mathit{TSS} = \sum {\left( {y_i  - \bar y} \right)^2 }  =   \vec y^T   \vec y - \frac{1}{n}\left( {  \vec y^T   \vec u  \vec u^T   \vec y} \right) = \mathit{SSR}+ \mathit{ESS}}.

Examples

In the simple linear regression case, we were able to compute by hand some (simple) examples). Such calculations are much more involved in the multilinear regression situations. Thus we demonstrate multilinear regression only using the SOCR Multiple Regression Analysis Appet.

Use the SOCR California Earthquake dataset to investigate whether Earthquake magnitude (dependent variable) can be predicted by knowing the longitude, latitude, distance and depth of the quake. Clearly, we do not expect these predictors to have a strong effect on the earthquake magnitude, so we expect the coefficient parameters not to be significantly distinct from zero (null hypothesis). SOCR Multilinear regression applet reports this model:

Magnitude = \beta_o + \beta_1\times Close+ \beta_2\times Depth+ \beta_3\times Longitude+ \beta_4\times Latitude + \varepsilon.
Magnitude = 2.320 + 0.001\times Close -0.003\times Depth -0.035\times Longitude -0.028\times Latitude + \varepsilon.



References




Translate this page:

(default)

Deutsch

Español

Français

Italiano

Português

日本語

България

الامارات العربية المتحدة

Suomi

इस भाषा में

Norge

한국어

中文

繁体中文

Русский

Nederlands

Ελληνικά

Hrvatska

Česká republika

Danmark

Polska

România

Sverige

Personal tools