AP Statistics Curriculum 2007 NonParam 2PropIndep

From Socr

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
==[[AP_Statistics_Curriculum_2007 | General Advance-Placement (AP) Statistics Curriculum]] -  Two-Samples Difference of Proportions==
==[[AP_Statistics_Curriculum_2007 | General Advance-Placement (AP) Statistics Curriculum]] -  Two-Samples Difference of Proportions==
 +
 +
==Differences of Proportions of Two Independent Samples==
 +
If the samples are independent and we are interested in the differences in the proportions of subjects of the same trait (a characteristic of each observation, e.g., gender) we need to use the [[AP_Statistics_Curriculum_2007_Hypothesis_Proportion | standard proportion tests]]
 +
: For small sample-sizes, we use corrected-proportions (<math>\tilde{p}</math>) that we saw in the [[AP_Statistics_Curriculum_2007_Hypothesis_Proportion | independent sample tests for proportions section]].
 +
: For large samples, we can use the raw-sample proportion (<math>\hat{p}</math>) as in the [[AP_Statistics_Curriculum_2007_Hypothesis_Proportion | independent sample tests for proportions section]].
==Differences of Proportions of Two Paired-Samples==
==Differences of Proportions of Two Paired-Samples==
-
McNemar's test A nonparametric test for differences in proportions in matched pair samples. It is most often used when the observed variable is a dichotomous variable.
+
If the samples are paired, then we can employ the McNemar's non-parametric test for differences in proportions in matched pair samples. It is most often used when the observed variable is a dichotomous variable (presence or absence of a trait/characteristic for each observation).
 +
 
 +
===Example===
 +
Suppose a medical doctor is interested in determining the effect of a drug on a particular disease (''D''). Suppose the doctor conducts a study and records the frequencies of incidence of the disease (<math>D^+</math> and <math>D^-</math>) in a random population before the treatment with the new drug takes place. Then the doctor prescribes the treatment to all subjects and records the incidence of the disease in the rows following the treatment. The test requires the same subjects to be included in the before- and after-treatment measurements (matched pairs).
 +
 
 +
<center>
 +
{| class="wikitable" style="text-align:center; width:35%" border="1"
 +
|-
 +
| colspan=2 rowspan=2|&nbsp;
 +
| colspan=3| '''Before Treatment'''
 +
|-
 +
|  <math>D^+</math> || <math>D^-</math>|| '''Total'''
 +
|-
 +
| rowspan=3| '''Before Treatment''' || <math>D^+</math> ||  a=101 ||  b=59 || a+b=160
 +
|-
 +
|  <math>D^+</math> || c=121 || d=33 || c+d=154
 +
|-
 +
|  '''Total''' || a+c=222 || b+d=92 || a+b+c+d=314
 +
|}
 +
</center>
 +
 
 +
'''Marginal homogeneity''' occurs when the row totals are equal to the column totals, ''a'' and ''d'' in each equation can be cancelled; leaving ''b'' equal to ''c'':
 +
 
 +
:<math>a+b = a+c \,</math>
 +
:<math>c+d = b+d\,</math>
-
==Approach==
+
In this example, '''marginal homogeneity''' would mean there was no effect of the treatment.
-
TBD
+
-
==Model Validation==
+
* The '''McNemar statistic''' is shown below:
-
TBD
+
-
==Computational Resources: Internet-based SOCR Tools==
+
:<math>\chi_o^2 = {(b-c)^2 \over b+c} \sim \chi_{(df=1)}^2</math>
-
TBD
+
-
==Examples==
+
The marginal frequencies are not homogeneous if the <math>\chi^2</math> result is significant ''p'' < 0.05. If ''b'' and/or ''c'' are small (''b''&nbsp;+&nbsp;''c'' < 20) then  <math>\chi^2</math> is not approximated by the Chi-square distribution and a [[AP_Statistics_Curriculum_2007_NonParam_2MedianPair | sign test]] should instead be used.
-
TBD
+
-
==Hands-on Activities==
+
An interesting observation when interpreting McNemar's test is that the elements of the main diagonal contribute no information whatsoever to the decision if (in the above example) pre- or post-treatment condition is more favorable.
-
TBD
+
<hr>
<hr>
==References==
==References==
-
* TBD
 
<hr>
<hr>

Revision as of 05:30, 27 February 2008

Contents

General Advance-Placement (AP) Statistics Curriculum - Two-Samples Difference of Proportions

Differences of Proportions of Two Independent Samples

If the samples are independent and we are interested in the differences in the proportions of subjects of the same trait (a characteristic of each observation, e.g., gender) we need to use the standard proportion tests

For small sample-sizes, we use corrected-proportions (\tilde{p}) that we saw in the independent sample tests for proportions section.
For large samples, we can use the raw-sample proportion (\hat{p}) as in the independent sample tests for proportions section.

Differences of Proportions of Two Paired-Samples

If the samples are paired, then we can employ the McNemar's non-parametric test for differences in proportions in matched pair samples. It is most often used when the observed variable is a dichotomous variable (presence or absence of a trait/characteristic for each observation).

Example

Suppose a medical doctor is interested in determining the effect of a drug on a particular disease (D). Suppose the doctor conducts a study and records the frequencies of incidence of the disease (D + and D) in a random population before the treatment with the new drug takes place. Then the doctor prescribes the treatment to all subjects and records the incidence of the disease in the rows following the treatment. The test requires the same subjects to be included in the before- and after-treatment measurements (matched pairs).

  Before Treatment
D + D Total
Before Treatment D + a=101 b=59 a+b=160
D + c=121 d=33 c+d=154
Total a+c=222 b+d=92 a+b+c+d=314

Marginal homogeneity occurs when the row totals are equal to the column totals, a and d in each equation can be cancelled; leaving b equal to c:

a+b = a+c \,
c+d = b+d\,

In this example, marginal homogeneity would mean there was no effect of the treatment.

  • The McNemar statistic is shown below:
\chi_o^2 = {(b-c)^2 \over b+c} \sim \chi_{(df=1)}^2

The marginal frequencies are not homogeneous if the χ2 result is significant p < 0.05. If b and/or c are small (b + c < 20) then χ2 is not approximated by the Chi-square distribution and a sign test should instead be used.

An interesting observation when interpreting McNemar's test is that the elements of the main diagonal contribute no information whatsoever to the decision if (in the above example) pre- or post-treatment condition is more favorable.


References




Translate this page:

(default)

Deutsch

Español

Français

Italiano

Português

日本語

България

الامارات العربية المتحدة

Suomi

इस भाषा में

Norge

한국어

中文

繁体中文

Русский

Nederlands

Ελληνικά

Hrvatska

Česká republika

Danmark

Polska

România

Sverige

Personal tools