Formulas

From Socr

(Difference between revisions)
Jump to: navigation, search
(Probability Density Functions (PDFs))
(Probability Density Functions (PDFs))
Line 70: Line 70:
(\kappa^x-1)}{log(\kappa)}). x>0 \!</math>
(\kappa^x-1)}{log(\kappa)}). x>0 \!</math>
* [http://socr.ucla.edu/htmls/dist/Hypoexponential.html Hypoexponential]: <math> f(x) = \sum_{i=1}^{n}(1/\alpha_i)exp(-x/\alpha_i)(\prod_{j=1,j\neq i}^{n}\frac{\alpha_i}{\alpha_i-\alpha_j}). x>0 \!</math>
* [http://socr.ucla.edu/htmls/dist/Hypoexponential.html Hypoexponential]: <math> f(x) = \sum_{i=1}^{n}(1/\alpha_i)exp(-x/\alpha_i)(\prod_{j=1,j\neq i}^{n}\frac{\alpha_i}{\alpha_i-\alpha_j}). x>0 \!</math>
-
* [http://socr.ucla.edu/htmls/dist/Doubly-noncentral-t.html Doubly Noncentral t]: <math>  \!</math>
+
* [http://socr.ucla.edu/htmls/dist/Doubly-noncentral-t_Distribution.html Doubly Noncentral t]: <math>  \!</math>
-
* [http://socr.ucla.edu/htmls/dist/Hyperexponential.html Hyperexponential]: <math> f(x) = \sum_{i=1}^{n}\frac{p_i}{\alpha_i}e^{-x/\alpha_i}. x>0 \!</math>
+
* [http://socr.ucla.edu/htmls/dist/Hyperexponential_Distribution.html Hyperexponential]: <math> f(x) = \sum_{i=1}^{n}\frac{p_i}{\alpha_i}e^{-x/\alpha_i}. x>0 \!</math>
* [http://socr.ucla.edu/htmls/dist/Muth.html Muth]: <math> f(x) = (e^{\kappa x}-\kappa)e^{-(1/\kappa)e^{\kappa x}+\kappa x+1/\kappa}. x>0 \!</math>
* [http://socr.ucla.edu/htmls/dist/Muth.html Muth]: <math> f(x) = (e^{\kappa x}-\kappa)e^{-(1/\kappa)e^{\kappa x}+\kappa x+1/\kappa}. x>0 \!</math>
* [http://socr.ucla.edu/htmls/dist/Error.html Error]: <math> f(x) = \frac{exp[-(|x-a|/b)^{2/c}/2]}{b 2^{c/2+1}\Gamma(1+c/2)}. -\infty < x < \infty \!</math>
* [http://socr.ucla.edu/htmls/dist/Error.html Error]: <math> f(x) = \frac{exp[-(|x-a|/b)^{2/c}/2]}{b 2^{c/2+1}\Gamma(1+c/2)}. -\infty < x < \infty \!</math>
Line 82: Line 82:
  1 - x, 0 \leq x<1 \end{cases} \!</math>
  1 - x, 0 \leq x<1 \end{cases} \!</math>
* [http://socr.ucla.edu/htmls/dist/Doubly-noncentral-F.html Doubly noncentral F]: <math> f(x)= \sum_{j=0}^{\infty}\sum_{k=0}^{\infty}[\frac{e^{-\delta/2}(\frac{1}{2}\delta)^j}{j!}][\frac{e^{-\gamma/2}(\frac{1}{2}\gamma)^k}{k!}]\times n_1^{(n_1/2)+j}n_2^{(n_2/2)+k}x^{(n_1/2)+j-1}\times (n_2+n_1 x)^{-\frac{1}{2}(n_1+n_2)-j-k}\times [B(\frac{1}{2}n_1+j,\frac{1}{2}n_2+k)]^{-1}. x>0  \!</math>
* [http://socr.ucla.edu/htmls/dist/Doubly-noncentral-F.html Doubly noncentral F]: <math> f(x)= \sum_{j=0}^{\infty}\sum_{k=0}^{\infty}[\frac{e^{-\delta/2}(\frac{1}{2}\delta)^j}{j!}][\frac{e^{-\gamma/2}(\frac{1}{2}\gamma)^k}{k!}]\times n_1^{(n_1/2)+j}n_2^{(n_2/2)+k}x^{(n_1/2)+j-1}\times (n_2+n_1 x)^{-\frac{1}{2}(n_1+n_2)-j-k}\times [B(\frac{1}{2}n_1+j,\frac{1}{2}n_2+k)]^{-1}. x>0  \!</math>
-
* [http://socr.ucla.edu/htmls/dist/Power.html Power]: <math> f(x)=\frac{\beta x^{\beta-1}}{\alpha^\beta}. 0<x<\alpha \!</math>
+
* [http://socr.ucla.edu/htmls/dist/Power_Distribution.html Power]: <math> f(x)=\frac{\beta x^{\beta-1}}{\alpha^\beta}. 0<x<\alpha \!</math>
* [http://socr.ucla.edu/htmls/dist/Weibull_Distribution.html Weibull]: <math> f(x)=(\beta/\alpha)x^{\beta-1}exp[-(1/\alpha)x^\beta]. x>0  \!</math>
* [http://socr.ucla.edu/htmls/dist/Weibull_Distribution.html Weibull]: <math> f(x)=(\beta/\alpha)x^{\beta-1}exp[-(1/\alpha)x^\beta]. x>0  \!</math>
-
* [http://socr.ucla.edu/htmls/dist/Log-logistic.html Log-logistic]: <math> f(x)=\frac{\lambda \kappa(\lambda x)^{\kappa-1}}{[1+(\lambda x)^\kappa]^2}. x>0 \!</math>
+
* [http://socr.ucla.edu/htmls/dist/Log-logistic_Distribution.html Log-logistic]: <math> f(x)=\frac{\lambda \kappa(\lambda x)^{\kappa-1}}{[1+(\lambda x)^\kappa]^2}. x>0 \!</math>
* [http://socr.ucla.edu/htmls/dist/TwoSidedPower_Distribution.html TSP]: <math> f(x) = \begin{cases} \frac{n}{b-a}(\frac{x-a}{m-a})^{n-1}, a<x\le m \\
* [http://socr.ucla.edu/htmls/dist/TwoSidedPower_Distribution.html TSP]: <math> f(x) = \begin{cases} \frac{n}{b-a}(\frac{x-a}{m-a})^{n-1}, a<x\le m \\
  \frac{n}{b-a}(\frac{b-x}{b-m})^{n-1}, m\le x<b \end{cases} \!</math>
  \frac{n}{b-a}(\frac{b-x}{b-m})^{n-1}, m\le x<b \end{cases} \!</math>
-
* [http://socr.ucla.edu/htmls/dist/Extreme-value.html Extreme value]: <math> f(x)=(\beta/\alpha)e^{x\beta-e^{x\beta}/\alpha}. -\infty<x<\infty \!</math>
+
* [http://socr.ucla.edu/htmls/dist/Extreme-value_Distribution.html Extreme value]: <math> f(x)=(\beta/\alpha)e^{x\beta-e^{x\beta}/\alpha}. -\infty<x<\infty \!</math>
* [http://socr.ucla.edu/htmls/dist/Lomax_Distribution.html Lomax]: <math> f(x)=\frac{\lambda \kappa}{(1+\lambda x)^{\kappa+1}}. x>0 \!</math>
* [http://socr.ucla.edu/htmls/dist/Lomax_Distribution.html Lomax]: <math> f(x)=\frac{\lambda \kappa}{(1+\lambda x)^{\kappa+1}}. x>0 \!</math>
* [http://socr.ucla.edu/htmls/dist/VonMises_Distribution.html von Mises]: <math> f(x)=\frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)}. 0<x<2\pi, 0<\mu<2\pi) \!</math>
* [http://socr.ucla.edu/htmls/dist/VonMises_Distribution.html von Mises]: <math> f(x)=\frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)}. 0<x<2\pi, 0<\mu<2\pi) \!</math>
-
* [http://socr.ucla.edu/htmls/dist/Generalized-Pareto.html Generalized Pareto]: <math> f(x)=(\gamma+\frac{\kappa}{x+\delta})(1+x/\delta)^{-\kappa}e^{-\gamma x}. x>0 \!</math>
+
* [http://socr.ucla.edu/htmls/dist/Generalized-Pareto_Distribution.html Generalized Pareto]: <math> f(x)=(\gamma+\frac{\kappa}{x+\delta})(1+x/\delta)^{-\kappa}e^{-\gamma x}. x>0 \!</math>
* [http://socr.ucla.edu/htmls/dist/Triangle_Distribution.html Triangular]: <math> f(x)=\begin{cases} \frac{2(x-a)}{(b-a)(m-a)}, a<x<m \\
* [http://socr.ucla.edu/htmls/dist/Triangle_Distribution.html Triangular]: <math> f(x)=\begin{cases} \frac{2(x-a)}{(b-a)(m-a)}, a<x<m \\
   \frac{2(b-x)}{(b-a)(b-m)}, m \le x<b \end{cases}. a<m<b \!</math>
   \frac{2(b-x)}{(b-a)(b-m)}, m \le x<b \end{cases}. a<m<b \!</math>
* [http://socr.ucla.edu/htmls/dist/Kolmogorov_Distribution.html Kolmogorov-Smirnov]: <math>  \!</math>
* [http://socr.ucla.edu/htmls/dist/Kolmogorov_Distribution.html Kolmogorov-Smirnov]: <math>  \!</math>
-
* [http://socr.ucla.edu/htmls/dist/Exponential-power.html Exponential Power]: <math> f(x)=(e^{1-e^{\lambda x^\kappa}})e^{\lambda x^\kappa}\lambda \kappa x^{\kappa-1}. x>0 \!</math>
+
* [http://socr.ucla.edu/htmls/dist/Exponential-power_Distribution.html Exponential Power]: <math> f(x)=(e^{1-e^{\lambda x^\kappa}})e^{\lambda x^\kappa}\lambda \kappa x^{\kappa-1}. x>0 \!</math>
==Transformations==
==Transformations==

Revision as of 04:53, 29 April 2010

Probability Density Functions (PDFs)

Transformations




Translate this page:

(default)

Deutsch

Español

Français

Italiano

Português

日本語

България

الامارات العربية المتحدة

Suomi

इस भाषा में

Norge

한국어

中文

繁体中文

Русский

Nederlands

Ελληνικά

Hrvatska

Česká republika

Danmark

Polska

România

Sverige

Personal tools