Formulas

From Socr

(Difference between revisions)
Jump to: navigation, search
(Transformations)
(Transformations)
 
(47 intermediate revisions not shown)
Line 95: Line 95:
* [http://socr.ucla.edu/htmls/dist/Kolmogorov_Distribution.html Kolmogorov-Smirnov]: <math>  \!</math>
* [http://socr.ucla.edu/htmls/dist/Kolmogorov_Distribution.html Kolmogorov-Smirnov]: <math>  \!</math>
* [http://socr.ucla.edu/htmls/dist/Exponential-power_Distribution.html Exponential Power]: <math> f(x)=(e^{1-e^{\lambda x^\kappa}})e^{\lambda x^\kappa}\lambda \kappa x^{\kappa-1}. x>0 \!</math>
* [http://socr.ucla.edu/htmls/dist/Exponential-power_Distribution.html Exponential Power]: <math> f(x)=(e^{1-e^{\lambda x^\kappa}})e^{\lambda x^\kappa}\lambda \kappa x^{\kappa-1}. x>0 \!</math>
 +
* [http://socr.ucla.edu/htmls/dist/Lévy_Distribution.html Lévy distribution]: <math> L_{\alpha ,\gamma } (y)={1\over \pi } \int _{0}^{\infty }e^{-\gamma q^{\alpha } } \cos (qy) dq    ,            y\in {\rm R} , \gamma >0 , 0<\alpha <2  </math>
 +
* [http://socr.ucla.edu/htmls/dist/Modified-Power-Series_Distribution.html Modified Power Series distributon]: <math> P(X=x)={a(x)\left\{u(c)\right\}^{x} \over A(c)}    </math>  where  <math> A(c)=\sum _{x}a(x)\left\{u(c)\right\}^{x}  ,a(x)\ge 0 </math>
 +
* [http://socr.ucla.edu/htmls/dist/Positive-binomial_Distribution.html Positive binomial distribution]: <math> P(X=x)=\binom{n}{x}{p^{x} q^{n-x} \over (1-q^{n} )} </math>          where    <math>  x=1,2,...,n </math>
 +
* [http://socr.ucla.edu/htmls/dist/Basic-Lagrangian-distribution-of-the-first-kind.html Basic Lagrangian distribution of the first kind (BLD1)]: <math> P(X=x)={1\over x!} \left[{\partial ^{x-1} \over \partial z^{x-1} } (g(z))^{x} \right]_{z=0} </math>  where <math>  g(z) </math> is pgf , <math> g(0) </math> is not 0
 +
* [http://socr.ucla.edu/htmls/dist/General-Basic-Lagrangian-distribution-of-the-first-kind.html General Basic Lagrangian distribution of the first kind (GLD1)]: <math> P(X=0)=f(0) ,
 +
P(X=x)={1\over x!} \left[{\partial ^{x-1} \over \partial z^{x-1} } \left\{(g(z))^{x} {\partial f(z)\over \partial z} \right\}\right]_{z=0}  ,    x>0</math> Where f(z) and g(z) are pgf  ,  <math>\left[{\partial ^{x-1} \over \partial z^{x-1} } \left\{(g(z))^{x} {\partial f(z)\over \partial z} \right\}\right]_{z=0} >0</math> for <math>x\ge 1</math>
 +
* [http://socr.ucla.edu/htmls/dist/Binomial-delta_Distribution.html Binomial-delta distribution]: <math> P(X=x)={n\over x}\binom{{mx}}{x-n}p^{x-n} q^{n+mx-x} </math>  for  <math>x\ge n</math>
 +
* [http://socr.ucla.edu/htmls/dist/Binomial-Poisson_Distribution.html Binomial-Poisson distribution]: <math> P(X=x)=e^{-M} {(Mq^{m} )^{x} \over x!} {}_{2} F{}_{0} [1-x,-mx;{p\over Mq} ] </math>  ,    for  <math>x\ge 0 </math>
 +
* [http://socr.ucla.edu/htmls/dist/Binomial-negative-binomial_Distribution.html Binomial-negative-binomial distribution]: <math> P(X=x)={\Gamma (k+x)\over x!\Gamma (x)} Q^{-k} \left({Pq^{m} \over Q} \right)^{x} {}_{2} F_{1} [1-x,-mx;1-x-k;{-pQ\over qP} ] </math>  for  <math>x\ge 0</math>
 +
* [http://socr.ucla.edu/htmls/dist/Poisson-delta _Distribution.html Poisson-delta distribution]: <math> P(X=x)={n\over x} {e^{-\theta x} (\theta x)^{x-n} \over (x-n)} </math>    for  <math>x\ge n </math>
 +
* [http://socr.ucla.edu/htmls/dist/Poisson-Poisson_Distribution.html Poisson-Poisson distribution(also called "Generalized Poisson distribution")]: <math> P(X=x)=M(M+\theta x)^{x-1} e^{-(M+\theta x)} /x! </math>  for  <math>x\ge 0 </math>
 +
* [http://socr.ucla.edu/htmls/dist/Poisson-binomial_Distribution.html Poisson-binomial distribution]: <math> P(X=x)={(\theta x)^{x-1} \over x!} e^{-\theta x} npq^{n-1} {}_{2} F_{0} [1-x,1-n;{p\over \theta qx} ]    ,    x\ge 1</math>
 +
* [http://socr.ucla.edu/htmls/dist/Poisson-negative-binomial_Distribution.html Poisson-negative-binomial distribution]: <math> P(X=x)={(\theta x)^{x-1} \over x!} e^{-\theta x} kPQ^{-k-1} {}_{2} F_{0} [1-x,1+k;{-P\over \theta Qx} ]    ,  x\ge 1</math>
 +
* [http://socr.ucla.edu/htmls/dist/Negative-binomial-delta_Distribution.html Negative-binomial-delta distribution]: <math> P(X=x)={n\over x} {\Gamma (kx+x-1)\over (x-n)!\Gamma (kx)} \left({P\over Q} \right)^{x-n} Q^{-kx}    ,  x\ge n </math>
 +
* [http://socr.ucla.edu/htmls/dist/Negative-binomial-Poisson_Distribution.html Negative-binomial-Poisson distribution]: <math> P(X=x)={e^{-M} M^{x} \over x!} Q^{-kx} {}_{2} F_{0} [1-x,kx;-;{-P\over MQ} ] </math> ,  for  <math>x\ge 0</math>
 +
* [http://socr.ucla.edu/htmls/dist/Negative-binomial-binomial_Distribution.html Negative-binomial-binomial distribution]: <math> P(X=0)=q^{n} </math> , <math>P(X=x)=npq^{n-1} {\Gamma (kx+x-1)\over x!\Gamma (kx)} \left({P\over Q} \right)^{x-1} Q^{-kx} {}_{2} F_{1} [1-x,1-n;2-x-kx;{-pQ\over Pq} ] </math>  for <math>x\ge 1</math>
 +
* [http://socr.ucla.edu/htmls/dist/Negative-binomial-negative-binomial_Distribution.html Negative-binomial-negative-binomial distribution]: <math> P(X=x)=(Q')^{-M} \left({P'\over Q'Q^{k} } \right)^{x} {\Gamma (M+x)\over x!\Gamma (M)} {}_{2} F_{1} [1-x,kx;1-M-x;{PQ'\over P'Q} ] </math> for <math>x\ge 1</math>
 +
* [http://socr.ucla.edu/htmls/dist/Weight-binomial_Distribution.html Weight binomial distribution]: <math> P(X=x)=w(x)p_{x} /\sum _{x}^{}w(x)p_{x}</math>
 +
* [http://socr.ucla.edu/htmls/dist/Positive-Poisson_Distribution.html Positive Poisson distribution (conditional Poisson distribution)]: <math> P(X=x)=(e^{\theta } -1)^{-1} \theta ^{x} /x! , x=1,2,......</math>
 +
* [http://socr.ucla.edu/htmls/dist/Left-truncated-Poisson_Distribution.html Left-truncated Poisson distribution]: <math> P(X=x)={e^{-\theta } \theta ^{x} \over x!} \left[1-e^{-\theta } \sum _{j=0}^{r_{1} -1}{\theta ^{j} \over j!}  \right]^{-1} , x=r_{1} ,r_{1} +1,...</math>
 +
* [http://socr.ucla.edu/htmls/dist/Right-truncated-Poisson_Distribution.html Right-truncated Poisson distribution]: <math> P(X=x)={\theta ^{x} \over x!} \left[\sum _{j=0}^{r_{2} }{\theta ^{j} \over j!}  \right]^{-1} , x=0,1,...,r_{2}</math>
 +
* [http://socr.ucla.edu/htmls/dist/Doubly-truncated-Poisson_Distribution.html Doubly-truncated Poisson distribution]: <math> P(X=x)={\theta ^{x} \over x!} \left[\sum _{j=r_{1} }^{r_{2} }{\theta ^{j} \over j!}  \right]^{-1} , x=r_{1} ,r_{1} +1,...,r_{2} , 0<r_{1} <r_{2}</math>
 +
* [http://socr.ucla.edu/htmls/dist/Misrecorded-Poisson_Distribution.html Misrecorded Poisson distribution]: <math> P(X=0)=\omega +(1-\omega )e^{-\theta }, P(X=x)=(1-\omega ){e^{-\theta } \theta ^{x} \over x!} , x\ge 1</math>
==Transformations==
==Transformations==
Line 148: Line 171:
* [http://socr.ucla.edu/htmls/dist/HyperbolicSecant_Distribution.html Standard Cauchy to Hyperbolic Secant]: <math> \frac{log|x|}{\pi} \ </math>
* [http://socr.ucla.edu/htmls/dist/HyperbolicSecant_Distribution.html Standard Cauchy to Hyperbolic Secant]: <math> \frac{log|x|}{\pi} \ </math>
* [http://socr.ucla.edu/htmls/dist/Standard_Power.html Beta to Standard Power]: <math> \alpha=\beta, \beta=1 \ </math>
* [http://socr.ucla.edu/htmls/dist/Standard_Power.html Beta to Standard Power]: <math> \alpha=\beta, \beta=1 \ </math>
-
* [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html Normal to Chi-square]: <math> (iid) \sum (\frac{x_i-\mu}{\sigma})^2\ </math>
 
* [http://en.wikipedia.org/wiki/Pascal Power series to Pascal]: <math> A(c)=(1-c)^{-x}, c=1-p \ </math>
* [http://en.wikipedia.org/wiki/Pascal Power series to Pascal]: <math> A(c)=(1-c)^{-x}, c=1-p \ </math>
-
* [http://socr.ucla.edu/htmls/dist/Normal_Distribution.html Beta to Normal]: <math> \beta=\gamma \to \infty \ </math>
 
-
* [http://socr.ucla.edu/htmls/dist/Normal_Distribution.html Normal to Gamma-normal]: <math> \sigma \sim Inverted gamma \ </math>
 
-
* [http://socr.ucla.edu/htmls/dist/Cauchy_Distribution.html Standard Normal to Standard Cauchy]: <math> \frac{X_1}{X_2} \ </math>
 
-
* [http://socr.ucla.edu/htmls/dist/Normal_Distribution.html Inverse Gaussian to Standard normal]: <math> \lambda \to \infty \ </math>
 
* [http://en.wikipedia.org/wiki/Pacal Gamma Poisson to Pascal]: <math> \alpha=(1-p)/p, \beta=n \ </math>
* [http://en.wikipedia.org/wiki/Pacal Gamma Poisson to Pascal]: <math> \alpha=(1-p)/p, \beta=n \ </math>
* [http://en.wikipedia.org/wiki/Gamma_Poisson Poisson to Gamma Poisson]: <math> \mu \sim gamma \ </math>
* [http://en.wikipedia.org/wiki/Gamma_Poisson Poisson to Gamma Poisson]: <math> \mu \sim gamma \ </math>
Line 166: Line 184:
* [http://en.wikipedia.org/wiki/Beta_binomial binomial to beta binomial]: <math> p\sim beta, \mu=np, n\to\infty\ </math>
* [http://en.wikipedia.org/wiki/Beta_binomial binomial to beta binomial]: <math> p\sim beta, \mu=np, n\to\infty\ </math>
* [http://en.wikipedia.org/wiki/Binomial negative hypergeometric to binomial]: <math> p=n_1/n_3, n_3\to\infty, n_1\to\infty,n_2=n\ </math>
* [http://en.wikipedia.org/wiki/Binomial negative hypergeometric to binomial]: <math> p=n_1/n_3, n_3\to\infty, n_1\to\infty,n_2=n\ </math>
-
* [http://en.wikipedia.org/wiki/Binomial Polya to Binomial]: <math> \ </math>
+
* [http://en.wikipedia.org/wiki/Binomial Polya to Binomial]: <math> \beta=0\ </math>
-
* [http://en.wikipedia.org/wiki/Geometric Pascal to geometric]: <math> \ </math>
+
* [http://en.wikipedia.org/wiki/Geometric Pascal to geometric]: <math> n=1 \ </math>
-
* [http://en.wikipedia.org/wiki/Pascal geometric to pascal]: <math> \ </math>
+
* [http://en.wikipedia.org/wiki/Pascal geometric to pascal]: <math> \sum{X_i}\ </math>
-
* [http://en.wikipedia.org/wiki/Geometric discrete weibull to geometric]: <math> \ </math>
+
* [http://en.wikipedia.org/wiki/Geometric discrete weibull to geometric]: <math> \beta=1\ </math>
-
* [http://en.wikipedia.org/wiki/Normal pascal to normal]: <math> \ </math>
+
* [http://en.wikipedia.org/wiki/Normal pascal to normal]: <math> \mu=n(1-p), n\to\infty\ </math>
-
* [http://en.wikipedia.org/wiki/standard_normal normal to standard normal]: <math> \ </math>
+
* [http://en.wikipedia.org/wiki/standard_normal normal to standard normal]: <math> \mu=0, \sigma=1\ </math>
-
* [http://en.wikipedia.org/wiki/Noncentral_chi-square normal to noncentral_chi-square]: <math> \ </math>
+
* [http://en.wikipedia.org/wiki/Noncentral_chi-square normal to noncentral_chi-square]: <math> \sum{X_i^2/{\sigma}^2}\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html Normal to Chi-square]: <math> (iid) \sum (\frac{x_i-\mu}{\sigma})^2\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Normal_Distribution.html Beta to Normal]: <math> \beta=\gamma \to \infty \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Normal_Distribution.html Normal to Gamma-normal]: <math> \sigma \sim Inverted \ gamma \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Cauchy_Distribution.html Standard Normal to Standard Cauchy]: <math> \frac{X_1}{X_2} \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Normal_Distribution.html Inverse Gaussian to Standard normal]: <math> \lambda \to \infty \ </math>
* [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html Noncentral chi-square to Chi-square]: <math> \delta=0 \ </math>
* [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html Noncentral chi-square to Chi-square]: <math> \delta=0 \ </math>
* [http://socr.ucla.edu/htmls/dist/Gamma_Distribution.html Gamma to Log gamma]:<math> log X \ </math>
* [http://socr.ucla.edu/htmls/dist/Gamma_Distribution.html Gamma to Log gamma]:<math> log X \ </math>
Line 180: Line 203:
* [http://socr.ucla.edu/htmls/dist/InverseGaussian_Distribution.html Inverse Gaussian to Standard Wald]:<math> \mu=1 \ </math>
* [http://socr.ucla.edu/htmls/dist/InverseGaussian_Distribution.html Inverse Gaussian to Standard Wald]:<math> \mu=1 \ </math>
* [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html Inverse Gaussian to Chi-square]:<math> \lambda(X-\mu)^2/(\mu^2 X)\ </math>
* [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html Inverse Gaussian to Chi-square]:<math> \lambda(X-\mu)^2/(\mu^2 X)\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Chi_Distribution.html Chi-square to Chi]:<math> \sqrt{X}\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Fisher_Distribution.html Chi-square to F]:<math> \frac{X_1/n_1}{X_2/n_2}\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html F to Chi-square]:<math> n_1 X, n_2 \to \infty \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html Exponential to Chi-square]:<math> (iid) \frac{2}{\alpha} \sum {X_i}\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Exponential_Distribution.html Chi-square to Exponential]:<math> \alpha=2, n=2 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Erlang_Distribution.html Chi-square to Erlang]:<math> n \ even\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html Gamma to Chi-square]:<math> n=2\beta, \alpha=2 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html Beta to Standard Uniform]:<math> \beta=\gamma=1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Erlang_Distribution.html Gamma to Erlang]:<math> \beta=n \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Gamma_Distribution.html Gamma to Inverted Beta]:<math> X_1/X_2, \alpha=1  \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Beta_Distribution.html Beta to Inverted Beta]:<math> \frac{X}{1-X} \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Cauchy_Distribution.html Cauchy to Arctangent]:<math> zero \ truncate \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Erlang_Distribution.html Hypoexponential to Erlang]:<math> \vec \alpha=\alpha \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Exponential_Distribution.html Exponential to Hypoexponential]:<math> \sum X_i\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Exponential_Distribution.html Erlang to Exponential]:<math> n=1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Gompertz_Distribution.html Makeham to Gompertz]:<math> \gamma=0 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/StudentT_Distribution.html Doubly noncentral t to Noncentral t]:<math> \gamma=0 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Fisher_Distribution.html Exponential to F]:<math> \alpha=1, X_1/X_2\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Fisher_Distribution.html Noncentral F to F]:<math> \delta \to 0\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Exponential_Distribution.html Exponential to Hyperexponential]:<math> Mixture\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Exponential_Distribution.html Hyperexponential to Exponential]:<math> \vec \alpha=\alpha \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Exponential_Distribution.html IDB to Exponential]:<math>\delta=\kappa \to 0, \alpha=1/ \gamma \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Rayleigh_Distribution.html Exponential to Rayleigh]:<math> X^2\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Exponential_Distribution.html Weibull to Exponential]:<math> \beta=1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Weibull_Distribution.html Exponential to Weibull]:<math> X^{1/\beta}\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Exponential_Distribution.html Muth to Exponential]:<math> \alpha=1, \kappa \to 0 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Gompertz_Distribution.html Standard uniform to Gompertz]:<math> \frac{log[1-(log X)(log \kappa)/\delta]}{log \kappa}\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/ContinuousUniform_Distribution.html Standard uniform to Exponential Power]:<math> [log(1-log(1-X))/\gamma]^{1/\kappa}\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Laplace_Distribution.html Error to Laplace]:<math> a=0, b=\alpha/2, c=2\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Error_Distribution.html Laplace to Error]:<math> \alpha_1=\alpha_2 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Log-logistic_Distribution.html Standard uniform to log logistic]:<math> \frac{1}{\lambda}(\frac{1-X}{X})^{1/\kappa} \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Standard-triangular_Distribution.html Standard uniform to Standard triangular]:<math> X_1-X_2 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/uniform_Distribution.html Standard uniform to uniform]:<math> a+(b-a)X \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Standard-Power_Distribution.html Standard uniform to standard power]:<math> X^{1/\beta} \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Standard-uniform_Distribution.html Standard power to standard uniform]:<math> \beta=1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Standard-power_Distribution.html Standard uniform to standard power]:<math> X_(n) \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Standard-power_Distribution.html Minimax to standard power]:<math> \gamma=1 \ </math>
 +
 +
* [http://socr.ucla.edu/htmls/dist/Rayleigh_Distribution.html IDB to Rayleigh]:<math> \delta=2/\alpha, \gamma=0 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Standard-Power_Distribution.html Power to Standard Power]:<math> \alpha=1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Rayleigh_Distribution.html Weibull to Rayleigh]:<math> \beta=2 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Pareto_Distribution.html Generalized Pareto to Pareto]:<math> \gamma=0, X+\delta \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Standard-triangular_Distribution.html Triangular to standard triangular]:<math> a=-1,b=1,m=0\ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Extreme-value_Distribution.html Weibull to Extreme-value]:<math> logX \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Lomax_Distribution.html Log logistic to lomax]:<math> \kappa=1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Log logistic_Distribution.html Lomax to log logistic]:<math> \kappa=1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Logistic_Distribution.html Log logistic to logistic]:<math> logX \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Triangular_Distribution.html TSP to triangular]:<math> n=2 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Uniform_Distribution.html von Mises to Uniform]:<math> \kappa \to 0 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Cauchy_Distribution.html Lévy to Cauchy]:<math> \alpha =1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Gaussian_Distribution.html Lévy to Gaussian]:<math> \alpha \to 2</math>
 +
* [http://socr.ucla.edu/htmls/dist/Power-series_Distribution.html Modified Power Series to Power series]:<math> u(c)=c  \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Geometric_Distribution.html BLD1 to Geometric]:<math> g(z)=1-p+pz \ </math> where<math>0<p<1  \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Borel-Tanner_Distribution.html BLD1 to Borel-Tanner]:<math> g(z)=e^{\lambda (z-1)}  , 0<\lambda  \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Binomial_Distribution.html GLD1 to Binomial]:<math> g(z)=1 \ </math>  and  <math>f(z)=(q'+p'z)^{n}  \ </math>  where  <math>q'=1-p' \ </math>  ,  <math>0<p'<1 \ </math>, and n is positive integer.
 +
* [http://socr.ucla.edu/htmls/dist/Negative-binomial_Distribution.html GLD1 to Negative binomial]:<math> g(z)=1 \ </math>      and  <math>      f(z)=(q'+p'z)^{n} \ </math>        where  <math>      q'=1+P \ </math>  , <math>      0<P \ </math> , and <math>  n=-k<0 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Binomial-delta_Distribution.html GLD1 to Binomial-delta]: <math> g(z)=(q+pz)^{m}  \ </math> , <math>      f(z)=z^{n}  \ </math> , <math> mp<1  \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Binomial-Poisson_Distribution.html GLD1 to Binomial-Poisson]:<math> : g(z)=(q+pz)^{m}  \ </math> , <math> f(z)=e^{M(z-1)} \ </math> , <math> mp<1  \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Binomial-negative-binomial_Distribution.html GLD1 to Binomial-negative-binomial]:<math> g(z)=(q+pz)^{m} \  </math>  ,  <math> f(z)=(Q-Pz)^{-k} \  </math>  ,  <math> mp<1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Poisson-delta_Distribution.html GLD1 to Poisson-delta]: <math> g(z)=e^{\theta (z-1)} \ </math>,  <math> f(z)=z^{n}  \ </math>,  <math> \theta <1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Poisson-Poisson_Distribution.html GLD1 to Poisson-Poisson]: <math> g(z)=e^{\theta (z-1)}  ,  f(z)=e^{M(z-1)}  ,  \theta <1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Poisson-binomial_Distribution.html GLD1 to Poisson-binomial]: <math> g(z)=e^{\theta (z-1)}  ,  f(z)=(q+pz)^{n} , \theta <1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Poisson-negative-binomial_Distribution.html GLD1 to Poisson-negative-binomial]: <math> g(z)=e^{\theta (z-1)}  ,  f(z)=(Q-Pz)^{-k} , \theta <1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Negative-binomial-delta_Distribution.html GLD1 to Negative-binomial-delta]: <math> g(z)=(Q-Pz)^{-k}  ,  f(z)=z^{n}  ,  kP<1  \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Negative-binomial-Poisson_Distribution.html GLD1 to Negative-binomial-Poisson]: <math> g(z)=(Q-Pz)^{-k}    ,  f(z)=e^{M(z-1)}  , kP<1  \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Negative-binomial-binomial_Distribution.html GLD1 to Negative-binomial-binomial]: <math> g(z)=(Q-Pz)^{-k}  ,  f(z)=(q+pz)^{n}  , kP<1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Negative-binomial-negative-binomial_Distribution.html GLD1 to Negative-binomial-negative-binomial]: <math> g(z)=(Q-Pz)^{-k}  ,  f(z)=(Q'-P'z)^{-M}  ,  kP<1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Poisson_Distribution.html Chi-Square to Poisson]: <math> \left(1-F_{\chi _{2(x+1)}^{2} } (2t/\tau )\right)-\left(1-F_{\chi _{2x}^{2} } (2t/\tau )\right) \ </math>      and    <math> \lambda =t/\tau \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Positive-Poisson_Distribution.html Left-truncated Poisson to Positive Poisson]: <math> r_{1} =1 \ </math>
 +
* [http://socr.ucla.edu/htmls/dist/Right-truncated-Poisson_Distribution.html Doubly-truncated Poisson to Right-truncated Poisson]: <math> r_{1} =0 \ </math>
 +
 +
 +
 +
<hr>
<hr>
 +
* SOCR Home page: http://www.socr.ucla.edu
* SOCR Home page: http://www.socr.ucla.edu
{{translate|pageName=http://wiki.stat.ucla.edu/socr/index.php?title=Formulas}}
{{translate|pageName=http://wiki.stat.ucla.edu/socr/index.php?title=Formulas}}

Current revision as of 12:57, 18 January 2011

Probability Density Functions (PDFs)

Transformations






Translate this page:

(default)

Deutsch

Español

Français

Italiano

Português

日本語

България

الامارات العربية المتحدة

Suomi

इस भाषा में

Norge

한국어

中文

繁体中文

Русский

Nederlands

Ελληνικά

Hrvatska

Česká republika

Danmark

Polska

România

Sverige

Personal tools