Formulas
From Socr
(Difference between revisions)
John guojun (Talk | contribs) (→Transformations) |
ChinPangHo (Talk | contribs) (→Transformations) |
||
(45 intermediate revisions not shown) | |||
Line 95: | Line 95: | ||
* [http://socr.ucla.edu/htmls/dist/Kolmogorov_Distribution.html Kolmogorov-Smirnov]: <math> \!</math> | * [http://socr.ucla.edu/htmls/dist/Kolmogorov_Distribution.html Kolmogorov-Smirnov]: <math> \!</math> | ||
* [http://socr.ucla.edu/htmls/dist/Exponential-power_Distribution.html Exponential Power]: <math> f(x)=(e^{1-e^{\lambda x^\kappa}})e^{\lambda x^\kappa}\lambda \kappa x^{\kappa-1}. x>0 \!</math> | * [http://socr.ucla.edu/htmls/dist/Exponential-power_Distribution.html Exponential Power]: <math> f(x)=(e^{1-e^{\lambda x^\kappa}})e^{\lambda x^\kappa}\lambda \kappa x^{\kappa-1}. x>0 \!</math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Lévy_Distribution.html Lévy distribution]: <math> L_{\alpha ,\gamma } (y)={1\over \pi } \int _{0}^{\infty }e^{-\gamma q^{\alpha } } \cos (qy) dq , y\in {\rm R} , \gamma >0 , 0<\alpha <2 </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Modified-Power-Series_Distribution.html Modified Power Series distributon]: <math> P(X=x)={a(x)\left\{u(c)\right\}^{x} \over A(c)} </math> where <math> A(c)=\sum _{x}a(x)\left\{u(c)\right\}^{x} ,a(x)\ge 0 </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Positive-binomial_Distribution.html Positive binomial distribution]: <math> P(X=x)=\binom{n}{x}{p^{x} q^{n-x} \over (1-q^{n} )} </math> where <math> x=1,2,...,n </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Basic-Lagrangian-distribution-of-the-first-kind.html Basic Lagrangian distribution of the first kind (BLD1)]: <math> P(X=x)={1\over x!} \left[{\partial ^{x-1} \over \partial z^{x-1} } (g(z))^{x} \right]_{z=0} </math> where <math> g(z) </math> is pgf , <math> g(0) </math> is not 0 | ||
+ | * [http://socr.ucla.edu/htmls/dist/General-Basic-Lagrangian-distribution-of-the-first-kind.html General Basic Lagrangian distribution of the first kind (GLD1)]: <math> P(X=0)=f(0) , | ||
+ | P(X=x)={1\over x!} \left[{\partial ^{x-1} \over \partial z^{x-1} } \left\{(g(z))^{x} {\partial f(z)\over \partial z} \right\}\right]_{z=0} , x>0</math> Where f(z) and g(z) are pgf , <math>\left[{\partial ^{x-1} \over \partial z^{x-1} } \left\{(g(z))^{x} {\partial f(z)\over \partial z} \right\}\right]_{z=0} >0</math> for <math>x\ge 1</math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Binomial-delta_Distribution.html Binomial-delta distribution]: <math> P(X=x)={n\over x}\binom{{mx}}{x-n}p^{x-n} q^{n+mx-x} </math> for <math>x\ge n</math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Binomial-Poisson_Distribution.html Binomial-Poisson distribution]: <math> P(X=x)=e^{-M} {(Mq^{m} )^{x} \over x!} {}_{2} F{}_{0} [1-x,-mx;{p\over Mq} ] </math> , for <math>x\ge 0 </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Binomial-negative-binomial_Distribution.html Binomial-negative-binomial distribution]: <math> P(X=x)={\Gamma (k+x)\over x!\Gamma (x)} Q^{-k} \left({Pq^{m} \over Q} \right)^{x} {}_{2} F_{1} [1-x,-mx;1-x-k;{-pQ\over qP} ] </math> for <math>x\ge 0</math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Poisson-delta _Distribution.html Poisson-delta distribution]: <math> P(X=x)={n\over x} {e^{-\theta x} (\theta x)^{x-n} \over (x-n)} </math> for <math>x\ge n </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Poisson-Poisson_Distribution.html Poisson-Poisson distribution(also called "Generalized Poisson distribution")]: <math> P(X=x)=M(M+\theta x)^{x-1} e^{-(M+\theta x)} /x! </math> for <math>x\ge 0 </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Poisson-binomial_Distribution.html Poisson-binomial distribution]: <math> P(X=x)={(\theta x)^{x-1} \over x!} e^{-\theta x} npq^{n-1} {}_{2} F_{0} [1-x,1-n;{p\over \theta qx} ] , x\ge 1</math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Poisson-negative-binomial_Distribution.html Poisson-negative-binomial distribution]: <math> P(X=x)={(\theta x)^{x-1} \over x!} e^{-\theta x} kPQ^{-k-1} {}_{2} F_{0} [1-x,1+k;{-P\over \theta Qx} ] , x\ge 1</math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Negative-binomial-delta_Distribution.html Negative-binomial-delta distribution]: <math> P(X=x)={n\over x} {\Gamma (kx+x-1)\over (x-n)!\Gamma (kx)} \left({P\over Q} \right)^{x-n} Q^{-kx} , x\ge n </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Negative-binomial-Poisson_Distribution.html Negative-binomial-Poisson distribution]: <math> P(X=x)={e^{-M} M^{x} \over x!} Q^{-kx} {}_{2} F_{0} [1-x,kx;-;{-P\over MQ} ] </math> , for <math>x\ge 0</math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Negative-binomial-binomial_Distribution.html Negative-binomial-binomial distribution]: <math> P(X=0)=q^{n} </math> , <math>P(X=x)=npq^{n-1} {\Gamma (kx+x-1)\over x!\Gamma (kx)} \left({P\over Q} \right)^{x-1} Q^{-kx} {}_{2} F_{1} [1-x,1-n;2-x-kx;{-pQ\over Pq} ] </math> for <math>x\ge 1</math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Negative-binomial-negative-binomial_Distribution.html Negative-binomial-negative-binomial distribution]: <math> P(X=x)=(Q')^{-M} \left({P'\over Q'Q^{k} } \right)^{x} {\Gamma (M+x)\over x!\Gamma (M)} {}_{2} F_{1} [1-x,kx;1-M-x;{PQ'\over P'Q} ] </math> for <math>x\ge 1</math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Weight-binomial_Distribution.html Weight binomial distribution]: <math> P(X=x)=w(x)p_{x} /\sum _{x}^{}w(x)p_{x}</math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Positive-Poisson_Distribution.html Positive Poisson distribution (conditional Poisson distribution)]: <math> P(X=x)=(e^{\theta } -1)^{-1} \theta ^{x} /x! , x=1,2,......</math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Left-truncated-Poisson_Distribution.html Left-truncated Poisson distribution]: <math> P(X=x)={e^{-\theta } \theta ^{x} \over x!} \left[1-e^{-\theta } \sum _{j=0}^{r_{1} -1}{\theta ^{j} \over j!} \right]^{-1} , x=r_{1} ,r_{1} +1,...</math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Right-truncated-Poisson_Distribution.html Right-truncated Poisson distribution]: <math> P(X=x)={\theta ^{x} \over x!} \left[\sum _{j=0}^{r_{2} }{\theta ^{j} \over j!} \right]^{-1} , x=0,1,...,r_{2}</math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Doubly-truncated-Poisson_Distribution.html Doubly-truncated Poisson distribution]: <math> P(X=x)={\theta ^{x} \over x!} \left[\sum _{j=r_{1} }^{r_{2} }{\theta ^{j} \over j!} \right]^{-1} , x=r_{1} ,r_{1} +1,...,r_{2} , 0<r_{1} <r_{2}</math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Misrecorded-Poisson_Distribution.html Misrecorded Poisson distribution]: <math> P(X=0)=\omega +(1-\omega )e^{-\theta }, P(X=x)=(1-\omega ){e^{-\theta } \theta ^{x} \over x!} , x\ge 1</math> | ||
==Transformations== | ==Transformations== | ||
Line 148: | Line 171: | ||
* [http://socr.ucla.edu/htmls/dist/HyperbolicSecant_Distribution.html Standard Cauchy to Hyperbolic Secant]: <math> \frac{log|x|}{\pi} \ </math> | * [http://socr.ucla.edu/htmls/dist/HyperbolicSecant_Distribution.html Standard Cauchy to Hyperbolic Secant]: <math> \frac{log|x|}{\pi} \ </math> | ||
* [http://socr.ucla.edu/htmls/dist/Standard_Power.html Beta to Standard Power]: <math> \alpha=\beta, \beta=1 \ </math> | * [http://socr.ucla.edu/htmls/dist/Standard_Power.html Beta to Standard Power]: <math> \alpha=\beta, \beta=1 \ </math> | ||
- | |||
* [http://en.wikipedia.org/wiki/Pascal Power series to Pascal]: <math> A(c)=(1-c)^{-x}, c=1-p \ </math> | * [http://en.wikipedia.org/wiki/Pascal Power series to Pascal]: <math> A(c)=(1-c)^{-x}, c=1-p \ </math> | ||
- | |||
- | |||
- | |||
- | |||
* [http://en.wikipedia.org/wiki/Pacal Gamma Poisson to Pascal]: <math> \alpha=(1-p)/p, \beta=n \ </math> | * [http://en.wikipedia.org/wiki/Pacal Gamma Poisson to Pascal]: <math> \alpha=(1-p)/p, \beta=n \ </math> | ||
* [http://en.wikipedia.org/wiki/Gamma_Poisson Poisson to Gamma Poisson]: <math> \mu \sim gamma \ </math> | * [http://en.wikipedia.org/wiki/Gamma_Poisson Poisson to Gamma Poisson]: <math> \mu \sim gamma \ </math> | ||
Line 169: | Line 187: | ||
* [http://en.wikipedia.org/wiki/Geometric Pascal to geometric]: <math> n=1 \ </math> | * [http://en.wikipedia.org/wiki/Geometric Pascal to geometric]: <math> n=1 \ </math> | ||
* [http://en.wikipedia.org/wiki/Pascal geometric to pascal]: <math> \sum{X_i}\ </math> | * [http://en.wikipedia.org/wiki/Pascal geometric to pascal]: <math> \sum{X_i}\ </math> | ||
- | * [http://en.wikipedia.org/wiki/Geometric discrete weibull to geometric]: <math> \ </math> | + | * [http://en.wikipedia.org/wiki/Geometric discrete weibull to geometric]: <math> \beta=1\ </math> |
- | * [http://en.wikipedia.org/wiki/Normal pascal to normal]: <math> \ </math> | + | * [http://en.wikipedia.org/wiki/Normal pascal to normal]: <math> \mu=n(1-p), n\to\infty\ </math> |
- | * [http://en.wikipedia.org/wiki/standard_normal normal to standard normal]: <math> \ </math> | + | * [http://en.wikipedia.org/wiki/standard_normal normal to standard normal]: <math> \mu=0, \sigma=1\ </math> |
- | * [http://en.wikipedia.org/wiki/Noncentral_chi-square normal to noncentral_chi-square]: <math> \ </math> | + | * [http://en.wikipedia.org/wiki/Noncentral_chi-square normal to noncentral_chi-square]: <math> \sum{X_i^2/{\sigma}^2}\ </math> |
+ | * [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html Normal to Chi-square]: <math> (iid) \sum (\frac{x_i-\mu}{\sigma})^2\ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Normal_Distribution.html Beta to Normal]: <math> \beta=\gamma \to \infty \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Normal_Distribution.html Normal to Gamma-normal]: <math> \sigma \sim Inverted \ gamma \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Cauchy_Distribution.html Standard Normal to Standard Cauchy]: <math> \frac{X_1}{X_2} \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Normal_Distribution.html Inverse Gaussian to Standard normal]: <math> \lambda \to \infty \ </math> | ||
* [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html Noncentral chi-square to Chi-square]: <math> \delta=0 \ </math> | * [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html Noncentral chi-square to Chi-square]: <math> \delta=0 \ </math> | ||
* [http://socr.ucla.edu/htmls/dist/Gamma_Distribution.html Gamma to Log gamma]:<math> log X \ </math> | * [http://socr.ucla.edu/htmls/dist/Gamma_Distribution.html Gamma to Log gamma]:<math> log X \ </math> | ||
Line 180: | Line 203: | ||
* [http://socr.ucla.edu/htmls/dist/InverseGaussian_Distribution.html Inverse Gaussian to Standard Wald]:<math> \mu=1 \ </math> | * [http://socr.ucla.edu/htmls/dist/InverseGaussian_Distribution.html Inverse Gaussian to Standard Wald]:<math> \mu=1 \ </math> | ||
* [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html Inverse Gaussian to Chi-square]:<math> \lambda(X-\mu)^2/(\mu^2 X)\ </math> | * [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html Inverse Gaussian to Chi-square]:<math> \lambda(X-\mu)^2/(\mu^2 X)\ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Chi_Distribution.html Chi-square to Chi]:<math> \sqrt{X}\ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Fisher_Distribution.html Chi-square to F]:<math> \frac{X_1/n_1}{X_2/n_2}\ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html F to Chi-square]:<math> n_1 X, n_2 \to \infty \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html Exponential to Chi-square]:<math> (iid) \frac{2}{\alpha} \sum {X_i}\ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Exponential_Distribution.html Chi-square to Exponential]:<math> \alpha=2, n=2 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Erlang_Distribution.html Chi-square to Erlang]:<math> n \ even\ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html Gamma to Chi-square]:<math> n=2\beta, \alpha=2 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/ChiSquare_Distribution.html Beta to Standard Uniform]:<math> \beta=\gamma=1 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Erlang_Distribution.html Gamma to Erlang]:<math> \beta=n \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Gamma_Distribution.html Gamma to Inverted Beta]:<math> X_1/X_2, \alpha=1 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Beta_Distribution.html Beta to Inverted Beta]:<math> \frac{X}{1-X} \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Cauchy_Distribution.html Cauchy to Arctangent]:<math> zero \ truncate \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Erlang_Distribution.html Hypoexponential to Erlang]:<math> \vec \alpha=\alpha \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Exponential_Distribution.html Exponential to Hypoexponential]:<math> \sum X_i\ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Exponential_Distribution.html Erlang to Exponential]:<math> n=1 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Gompertz_Distribution.html Makeham to Gompertz]:<math> \gamma=0 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/StudentT_Distribution.html Doubly noncentral t to Noncentral t]:<math> \gamma=0 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Fisher_Distribution.html Exponential to F]:<math> \alpha=1, X_1/X_2\ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Fisher_Distribution.html Noncentral F to F]:<math> \delta \to 0\ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Exponential_Distribution.html Exponential to Hyperexponential]:<math> Mixture\ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Exponential_Distribution.html Hyperexponential to Exponential]:<math> \vec \alpha=\alpha \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Exponential_Distribution.html IDB to Exponential]:<math>\delta=\kappa \to 0, \alpha=1/ \gamma \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Rayleigh_Distribution.html Exponential to Rayleigh]:<math> X^2\ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Exponential_Distribution.html Weibull to Exponential]:<math> \beta=1 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Weibull_Distribution.html Exponential to Weibull]:<math> X^{1/\beta}\ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Exponential_Distribution.html Muth to Exponential]:<math> \alpha=1, \kappa \to 0 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Gompertz_Distribution.html Standard uniform to Gompertz]:<math> \frac{log[1-(log X)(log \kappa)/\delta]}{log \kappa}\ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/ContinuousUniform_Distribution.html Standard uniform to Exponential Power]:<math> [log(1-log(1-X))/\gamma]^{1/\kappa}\ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Laplace_Distribution.html Error to Laplace]:<math> a=0, b=\alpha/2, c=2\ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Error_Distribution.html Laplace to Error]:<math> \alpha_1=\alpha_2 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Log-logistic_Distribution.html Standard uniform to log logistic]:<math> \frac{1}{\lambda}(\frac{1-X}{X})^{1/\kappa} \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Standard-triangular_Distribution.html Standard uniform to Standard triangular]:<math> X_1-X_2 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/uniform_Distribution.html Standard uniform to uniform]:<math> a+(b-a)X \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Standard-Power_Distribution.html Standard uniform to standard power]:<math> X^{1/\beta} \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Standard-uniform_Distribution.html Standard power to standard uniform]:<math> \beta=1 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Standard-power_Distribution.html Standard uniform to standard power]:<math> X_(n) \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Standard-power_Distribution.html Minimax to standard power]:<math> \gamma=1 \ </math> | ||
+ | |||
+ | * [http://socr.ucla.edu/htmls/dist/Rayleigh_Distribution.html IDB to Rayleigh]:<math> \delta=2/\alpha, \gamma=0 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Standard-Power_Distribution.html Power to Standard Power]:<math> \alpha=1 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Rayleigh_Distribution.html Weibull to Rayleigh]:<math> \beta=2 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Pareto_Distribution.html Generalized Pareto to Pareto]:<math> \gamma=0, X+\delta \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Standard-triangular_Distribution.html Triangular to standard triangular]:<math> a=-1,b=1,m=0\ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Extreme-value_Distribution.html Weibull to Extreme-value]:<math> logX \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Lomax_Distribution.html Log logistic to lomax]:<math> \kappa=1 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Log logistic_Distribution.html Lomax to log logistic]:<math> \kappa=1 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Logistic_Distribution.html Log logistic to logistic]:<math> logX \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Triangular_Distribution.html TSP to triangular]:<math> n=2 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Uniform_Distribution.html von Mises to Uniform]:<math> \kappa \to 0 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Cauchy_Distribution.html Lévy to Cauchy]:<math> \alpha =1 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Gaussian_Distribution.html Lévy to Gaussian]:<math> \alpha \to 2</math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Power-series_Distribution.html Modified Power Series to Power series]:<math> u(c)=c \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Geometric_Distribution.html BLD1 to Geometric]:<math> g(z)=1-p+pz \ </math> where<math>0<p<1 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Borel-Tanner_Distribution.html BLD1 to Borel-Tanner]:<math> g(z)=e^{\lambda (z-1)} , 0<\lambda \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Binomial_Distribution.html GLD1 to Binomial]:<math> g(z)=1 \ </math> and <math>f(z)=(q'+p'z)^{n} \ </math> where <math>q'=1-p' \ </math> , <math>0<p'<1 \ </math>, and n is positive integer. | ||
+ | * [http://socr.ucla.edu/htmls/dist/Negative-binomial_Distribution.html GLD1 to Negative binomial]:<math> g(z)=1 \ </math> and <math> f(z)=(q'+p'z)^{n} \ </math> where <math> q'=1+P \ </math> , <math> 0<P \ </math> , and <math> n=-k<0 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Binomial-delta_Distribution.html GLD1 to Binomial-delta]: <math> g(z)=(q+pz)^{m} \ </math> , <math> f(z)=z^{n} \ </math> , <math> mp<1 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Binomial-Poisson_Distribution.html GLD1 to Binomial-Poisson]:<math> : g(z)=(q+pz)^{m} \ </math> , <math> f(z)=e^{M(z-1)} \ </math> , <math> mp<1 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Binomial-negative-binomial_Distribution.html GLD1 to Binomial-negative-binomial]:<math> g(z)=(q+pz)^{m} \ </math> , <math> f(z)=(Q-Pz)^{-k} \ </math> , <math> mp<1 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Poisson-delta_Distribution.html GLD1 to Poisson-delta]: <math> g(z)=e^{\theta (z-1)} \ </math>, <math> f(z)=z^{n} \ </math>, <math> \theta <1 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Poisson-Poisson_Distribution.html GLD1 to Poisson-Poisson]: <math> g(z)=e^{\theta (z-1)} , f(z)=e^{M(z-1)} , \theta <1 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Poisson-binomial_Distribution.html GLD1 to Poisson-binomial]: <math> g(z)=e^{\theta (z-1)} , f(z)=(q+pz)^{n} , \theta <1 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Poisson-negative-binomial_Distribution.html GLD1 to Poisson-negative-binomial]: <math> g(z)=e^{\theta (z-1)} , f(z)=(Q-Pz)^{-k} , \theta <1 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Negative-binomial-delta_Distribution.html GLD1 to Negative-binomial-delta]: <math> g(z)=(Q-Pz)^{-k} , f(z)=z^{n} , kP<1 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Negative-binomial-Poisson_Distribution.html GLD1 to Negative-binomial-Poisson]: <math> g(z)=(Q-Pz)^{-k} , f(z)=e^{M(z-1)} , kP<1 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Negative-binomial-binomial_Distribution.html GLD1 to Negative-binomial-binomial]: <math> g(z)=(Q-Pz)^{-k} , f(z)=(q+pz)^{n} , kP<1 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Negative-binomial-negative-binomial_Distribution.html GLD1 to Negative-binomial-negative-binomial]: <math> g(z)=(Q-Pz)^{-k} , f(z)=(Q'-P'z)^{-M} , kP<1 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Poisson_Distribution.html Chi-Square to Poisson]: <math> \left(1-F_{\chi _{2(x+1)}^{2} } (2t/\tau )\right)-\left(1-F_{\chi _{2x}^{2} } (2t/\tau )\right) \ </math> and <math> \lambda =t/\tau \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Positive-Poisson_Distribution.html Left-truncated Poisson to Positive Poisson]: <math> r_{1} =1 \ </math> | ||
+ | * [http://socr.ucla.edu/htmls/dist/Right-truncated-Poisson_Distribution.html Doubly-truncated Poisson to Right-truncated Poisson]: <math> r_{1} =0 \ </math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
<hr> | <hr> | ||
+ | |||
* SOCR Home page: http://www.socr.ucla.edu | * SOCR Home page: http://www.socr.ucla.edu | ||
{{translate|pageName=http://wiki.stat.ucla.edu/socr/index.php?title=Formulas}} | {{translate|pageName=http://wiki.stat.ucla.edu/socr/index.php?title=Formulas}} |
Current revision as of 12:57, 18 January 2011
Probability Density Functions (PDFs)
- Standard Normal PDF:
- General Normal PDF:
- Chi-Square PDF:
- Gamma PDF:
- Beta PDF:
- Student's T PDF:
- Poisson PDF:
- Chi PDF:
- Cauchy PDF:
- Exponential PDF:
- F Distribution PDF:
- Bernoulli PMF:
- Binomial PMF:
- Multinomial PMF:
, where
,
, and
.
- Negative Binomial PMF:
- Negative-Multinomial Binomial PMF:
- Geometric PMF:
- Erlang PDF:
- Laplace PDF:
- Continuous Uniform PDF:
- Discrete Uniform PMF:
- Logarithmic PDF:
- Logistic PDF:
- Logistic-Exponential PDF:
- Power Function PDF:
- Benford's Law:
- Pareto PDF:
- Non-Central Student T PDF:
- ArcSine PDF:
- Circle PDF:
- U-Quadratic PDF:
- Standard Uniform PDF:
- Zipf:
- Inverse Gamma:
- Fisher-Tippett:
where - Gumbel:
- HyperGeometric:
- Log-Normal:
- Gilbrats:
- Hyperbolic Secant:
- Gompertz:
- Standard Cauchy:
- Rectangular:
- Beta-Binomial:
- Negative Hypergeometric:
- Standard Power:
- Power_Series:
- Zeta:
- Logarithm:
- Beta_Pascal:
- Gamma_Poisson:
- Pascal:
- Polya:
- Normal-Gamma:
- Discrete_Weibull:
- Log Gamma:
- Generalized Gamma:
- Noncentral-Beta:
- Inverse Gausian:
- Noncentral_chi-square:
- Standard Wald:
- Inverted Beta:
- Arctangent:
- Makeham:
- Hypoexponential:
- Doubly Noncentral t:
- Hyperexponential:
- Muth:
- Error:
- Minimax:
- Noncentral F:
- IDB:
- Standard Power:
- Rayleigh:
- Standard Triangular:
- Doubly noncentral F:
- Power:
- Weibull:
- Log-logistic:
- TSP:
- Extreme value:
- Lomax:
- von Mises:
- Generalized Pareto:
- Triangular:
- Kolmogorov-Smirnov:
- Exponential Power:
- Lévy distribution:
- Modified Power Series distributon:
where
- Positive binomial distribution:
where x = 1,2,...,n
- Basic Lagrangian distribution of the first kind (BLD1):
where g(z) is pgf , g(0) is not 0
- General Basic Lagrangian distribution of the first kind (GLD1):
Where f(z) and g(z) are pgf ,
for
- Binomial-delta distribution:
for
- Binomial-Poisson distribution:
, for
- Binomial-negative-binomial distribution:
for
- _Distribution.html Poisson-delta distribution:
for
- Poisson-Poisson distribution(also called "Generalized Poisson distribution"): P(X = x) = M(M + θx)x − 1e − (M + θx) / x! for
- Poisson-binomial distribution:
- Poisson-negative-binomial distribution:
- Negative-binomial-delta distribution:
- Negative-binomial-Poisson distribution:
, for
- Negative-binomial-binomial distribution: P(X = 0) = qn ,
for
- Negative-binomial-negative-binomial distribution:
for
- Weight binomial distribution:
- Positive Poisson distribution (conditional Poisson distribution): P(X = x) = (eθ − 1) − 1θx / x!,x = 1,2,......
- Left-truncated Poisson distribution:
- Right-truncated Poisson distribution:
- Doubly-truncated Poisson distribution:
- Misrecorded Poisson distribution:
Transformations
- Standard Normal to General Normal Transformation:
- General Normal to Standard Normal Transformation:
- Standard Normal to Chi Transformation:
- Standard Normal to Chi-Square Transformation:
- Gamma to General Normal Transformation:
- Gamma to Exponential Transformation: The special case of
is equivalent to exponential Exp(λ).
- Gamma to Beta Transformation:
.
- Student's T to Standard Normal Transformation:
- Student's T to Cauchy Transformation:
- Cauchy to General Cauchy Transformation:
- General Cauchy to Cauchy Transformation:
- Fisher's F to Student's T:
- Student's T to Fisher's F: X2
- Bernoulli to Binomial Transformation:
(iid)
- Binomial to Bernoulli Transformation:
- Binomial to General Normal Transformation:
- Binomial to Poisson Transformation:
- Multinomial to Binomial Transformation:
- Negative Binomial to Geometric Transformation:
- Erlang to Exponential Transformation:
- Erlang to Chi-Square Transformation:
- Laplace to Exponential Transformation:
- Exponential to Laplace Transformation:
- Beta to Arcsine Transformation:
- Noncentral Student's T to Normal Transformation:
- Noncentral Student's T to Student's T Transformation:
- Standard Uniform to Pareto Transformation:
- Standard Uniform to Benford Transformation:
- Standard Uniform to Exponential Transformation:
- Standard Uniform to Log Logistic Transformation:
- Standard Uniform to Standard Triangular Transformation: X1 − X2
- Standard Uniform to Logistic Exponential Transformation:
- Standard Uniform to Beta Transformation: If X has a standard uniform distribution,
has a beta distribution
- Beta to Standard Uniform Transformation: β = γ = 1
- Continuous Uniform to Standard Uniform Transformation:
- Pareto to Exponential:
- Logistic Exponential to Exponential:
- Zipf to Discrete Uniform:
- Discrete Uniform to Rectangular:
- Poisson to Normal:
- Binomial to Poisson:
- Gamma to Inverted Gamma:
- Fisher-Tippett to Gumbel:
- Hypergeometric to Binomial:
- Log-Normal to Normal:
- Normal to Log-Normal:
- Log-Normal to Gibrat's:
- Cauchy to Standard Cauchy:
- Standard Cauchy to Cauchy:
- Standard Cauchy to Hyperbolic Secant:
- Beta to Standard Power:
- Power series to Pascal:
- Gamma Poisson to Pascal:
- Poisson to Gamma Poisson:
- Discrete uniform to Rectangular:
- beta binomial to rectangular:
- beta binomial to negative hypergeometric:
- Zipf to Zeta:
- Power series to Logarithm:
- Power series to Poisson:
- Pascal to Beta pascal:
- pascal to poisson:
- binomial to beta binomial:
- negative hypergeometric to binomial:
- Polya to Binomial:
- Pascal to geometric:
- geometric to pascal:
- discrete weibull to geometric:
- pascal to normal:
- normal to standard normal:
- normal to noncentral_chi-square:
- Normal to Chi-square:
- Beta to Normal:
- Normal to Gamma-normal:
- Standard Normal to Standard Cauchy:
- Inverse Gaussian to Standard normal:
- Noncentral chi-square to Chi-square:
- Gamma to Log gamma:
- Generalized gamma to Log normal:
- Generalized gamma to Gamma:
- Inverse Gaussian to Standard Wald:
- Inverse Gaussian to Chi-square:
- Chi-square to Chi:
- Chi-square to F:
- F to Chi-square:
- Exponential to Chi-square:
- Chi-square to Exponential:
- Chi-square to Erlang:
- Gamma to Chi-square:
- Beta to Standard Uniform:
- Gamma to Erlang:
- Gamma to Inverted Beta:
- Beta to Inverted Beta:
- Cauchy to Arctangent:
- Hypoexponential to Erlang:
- Exponential to Hypoexponential:
- Erlang to Exponential:
- Makeham to Gompertz:
- Doubly noncentral t to Noncentral t:
- Exponential to F:
- Noncentral F to F:
- Exponential to Hyperexponential:
- Hyperexponential to Exponential:
- IDB to Exponential:
- Exponential to Rayleigh:
- Weibull to Exponential:
- Exponential to Weibull:
- Muth to Exponential:
- Standard uniform to Gompertz:
- Standard uniform to Exponential Power:
- Error to Laplace:
- Laplace to Error:
- Standard uniform to log logistic:
- Standard uniform to Standard triangular:
- Standard uniform to uniform:
- Standard uniform to standard power:
- Standard power to standard uniform:
- Standard uniform to standard power:
- Minimax to standard power:
- IDB to Rayleigh:
- Power to Standard Power:
- Weibull to Rayleigh:
- Generalized Pareto to Pareto:
- Triangular to standard triangular:
- Weibull to Extreme-value:
- Log logistic to lomax:
- logistic_Distribution.html Lomax to log logistic:
- Log logistic to logistic:
- TSP to triangular:
- von Mises to Uniform:
- Lévy to Cauchy:
- Lévy to Gaussian:
- Modified Power Series to Power series:
- BLD1 to Geometric:
where
- BLD1 to Borel-Tanner:
- GLD1 to Binomial:
and
where
,
, and n is positive integer.
- GLD1 to Negative binomial:
and
where
,
, and
- GLD1 to Binomial-delta:
,
,
- GLD1 to Binomial-Poisson:
,
,
- GLD1 to Binomial-negative-binomial:
,
,
- GLD1 to Poisson-delta:
,
,
- GLD1 to Poisson-Poisson:
- GLD1 to Poisson-binomial:
- GLD1 to Poisson-negative-binomial:
- GLD1 to Negative-binomial-delta:
- GLD1 to Negative-binomial-Poisson:
- GLD1 to Negative-binomial-binomial:
- GLD1 to Negative-binomial-negative-binomial:
- Chi-Square to Poisson:
and
- Left-truncated Poisson to Positive Poisson:
- Doubly-truncated Poisson to Right-truncated Poisson:
- SOCR Home page: http://www.socr.ucla.edu
Translate this page: