Formulas
From Socr
(Difference between revisions)
ChinPangHo (Talk | contribs) (→Transformations) |
ChinPangHo (Talk | contribs) (→Transformations) |
||
Line 232: | Line 232: | ||
* [http://socr.ucla.edu/htmls/dist/Cauchy_Distribution.html Lévy to Cauchy]:<math> \alpha =1 \ </math> | * [http://socr.ucla.edu/htmls/dist/Cauchy_Distribution.html Lévy to Cauchy]:<math> \alpha =1 \ </math> | ||
* [http://socr.ucla.edu/htmls/dist/Gaussian_Distribution.html Lévy to Gaussian]:<math> \alpha \to 2</math> | * [http://socr.ucla.edu/htmls/dist/Gaussian_Distribution.html Lévy to Gaussian]:<math> \alpha \to 2</math> | ||
- | * [http://socr.ucla.edu/htmls/dist/Power-series_Distribution.html Modified Power Series to Power series]:<math> u(c)=c </math> | + | * [http://socr.ucla.edu/htmls/dist/Power-series_Distribution.html Modified Power Series to Power series]:<math> u(c)=c \ </math> |
- | * [http://socr.ucla.edu/htmls/dist/Geometric_Distribution.html BLD1 to Geometric]:<math> g(z)=1-p+pz$ where $0<p<1 </math> | + | * [http://socr.ucla.edu/htmls/dist/Geometric_Distribution.html BLD1 to Geometric]:<math> g(z)=1-p+pz$ where $0<p<1 \ </math> |
Revision as of 13:24, 11 January 2011
Probability Density Functions (PDFs)
- Standard Normal PDF:
- General Normal PDF:
- Chi-Square PDF:
- Gamma PDF:
- Beta PDF:
- Student's T PDF:
- Poisson PDF:
- Chi PDF:
- Cauchy PDF:
- Exponential PDF:
- F Distribution PDF:
- Bernoulli PMF:
- Binomial PMF:
- Multinomial PMF:
, where
,
, and
.
- Negative Binomial PMF:
- Negative-Multinomial Binomial PMF:
- Geometric PMF:
- Erlang PDF:
- Laplace PDF:
- Continuous Uniform PDF:
- Discrete Uniform PMF:
- Logarithmic PDF:
- Logistic PDF:
- Logistic-Exponential PDF:
- Power Function PDF:
- Benford's Law:
- Pareto PDF:
- Non-Central Student T PDF:
- ArcSine PDF:
- Circle PDF:
- U-Quadratic PDF:
- Standard Uniform PDF:
- Zipf:
- Inverse Gamma:
- Fisher-Tippett:
where - Gumbel:
- HyperGeometric:
- Log-Normal:
- Gilbrats:
- Hyperbolic Secant:
- Gompertz:
- Standard Cauchy:
- Rectangular:
- Beta-Binomial:
- Negative Hypergeometric:
- Standard Power:
- Power_Series:
- Zeta:
- Logarithm:
- Beta_Pascal:
- Gamma_Poisson:
- Pascal:
- Polya:
- Normal-Gamma:
- Discrete_Weibull:
- Log Gamma:
- Generalized Gamma:
- Noncentral-Beta:
- Inverse Gausian:
- Noncentral_chi-square:
- Standard Wald:
- Inverted Beta:
- Arctangent:
- Makeham:
- Hypoexponential:
- Doubly Noncentral t:
- Hyperexponential:
- Muth:
- Error:
- Minimax:
- Noncentral F:
- IDB:
- Standard Power:
- Rayleigh:
- Standard Triangular:
- Doubly noncentral F:
- Power:
- Weibull:
- Log-logistic:
- TSP:
- Extreme value:
- Lomax:
- von Mises:
- Generalized Pareto:
- Triangular:
- Kolmogorov-Smirnov:
- Exponential Power:
- Lévy distribution:
Transformations
- Standard Normal to General Normal Transformation:
- General Normal to Standard Normal Transformation:
- Standard Normal to Chi Transformation:
- Standard Normal to Chi-Square Transformation:
- Gamma to General Normal Transformation:
- Gamma to Exponential Transformation: The special case of
is equivalent to exponential Exp(λ).
- Gamma to Beta Transformation:
.
- Student's T to Standard Normal Transformation:
- Student's T to Cauchy Transformation:
- Cauchy to General Cauchy Transformation:
- General Cauchy to Cauchy Transformation:
- Fisher's F to Student's T:
- Student's T to Fisher's F: X2
- Bernoulli to Binomial Transformation:
(iid)
- Binomial to Bernoulli Transformation:
- Binomial to General Normal Transformation:
- Binomial to Poisson Transformation:
- Multinomial to Binomial Transformation:
- Negative Binomial to Geometric Transformation:
- Erlang to Exponential Transformation:
- Erlang to Chi-Square Transformation:
- Laplace to Exponential Transformation:
- Exponential to Laplace Transformation:
- Beta to Arcsine Transformation:
- Noncentral Student's T to Normal Transformation:
- Noncentral Student's T to Student's T Transformation:
- Standard Uniform to Pareto Transformation:
- Standard Uniform to Benford Transformation:
- Standard Uniform to Exponential Transformation:
- Standard Uniform to Log Logistic Transformation:
- Standard Uniform to Standard Triangular Transformation: X1 − X2
- Standard Uniform to Logistic Exponential Transformation:
- Standard Uniform to Beta Transformation: If X has a standard uniform distribution,
has a beta distribution
- Beta to Standard Uniform Transformation: β = γ = 1
- Continuous Uniform to Standard Uniform Transformation:
- Pareto to Exponential:
- Logistic Exponential to Exponential:
- Zipf to Discrete Uniform:
- Discrete Uniform to Rectangular:
- Poisson to Normal:
- Binomial to Poisson:
- Gamma to Inverted Gamma:
- Fisher-Tippett to Gumbel:
- Hypergeometric to Binomial:
- Log-Normal to Normal:
- Normal to Log-Normal:
- Log-Normal to Gibrat's:
- Cauchy to Standard Cauchy:
- Standard Cauchy to Cauchy:
- Standard Cauchy to Hyperbolic Secant:
- Beta to Standard Power:
- Power series to Pascal:
- Gamma Poisson to Pascal:
- Poisson to Gamma Poisson:
- Discrete uniform to Rectangular:
- beta binomial to rectangular:
- beta binomial to negative hypergeometric:
- Zipf to Zeta:
- Power series to Logarithm:
- Power series to Poisson:
- Pascal to Beta pascal:
- pascal to poisson:
- binomial to beta binomial:
- negative hypergeometric to binomial:
- Polya to Binomial:
- Pascal to geometric:
- geometric to pascal:
- discrete weibull to geometric:
- pascal to normal:
- normal to standard normal:
- normal to noncentral_chi-square:
- Normal to Chi-square:
- Beta to Normal:
- Normal to Gamma-normal:
- Standard Normal to Standard Cauchy:
- Inverse Gaussian to Standard normal:
- Noncentral chi-square to Chi-square:
- Gamma to Log gamma:
- Generalized gamma to Log normal:
- Generalized gamma to Gamma:
- Inverse Gaussian to Standard Wald:
- Inverse Gaussian to Chi-square:
- Chi-square to Chi:
- Chi-square to F:
- F to Chi-square:
- Exponential to Chi-square:
- Chi-square to Exponential:
- Chi-square to Erlang:
- Gamma to Chi-square:
- Beta to Standard Uniform:
- Gamma to Erlang:
- Gamma to Inverted Beta:
- Beta to Inverted Beta:
- Cauchy to Arctangent:
- Hypoexponential to Erlang:
- Exponential to Hypoexponential:
- Erlang to Exponential:
- Makeham to Gompertz:
- Doubly noncentral t to Noncentral t:
- Exponential to F:
- Noncentral F to F:
- Exponential to Hyperexponential:
- Hyperexponential to Exponential:
- IDB to Exponential:
- Exponential to Rayleigh:
- Weibull to Exponential:
- Exponential to Weibull:
- Muth to Exponential:
- Standard uniform to Gompertz:
- Standard uniform to Exponential Power:
- Error to Laplace:
- Laplace to Error:
- Standard uniform to log logistic:
- Standard uniform to Standard triangular:
- Standard uniform to uniform:
- Standard uniform to standard power:
- Standard power to standard uniform:
- Standard uniform to standard power:
- Minimax to standard power:
- IDB to Rayleigh:
- Power to Standard Power:
- Weibull to Rayleigh:
- Generalized Pareto to Pareto:
- Triangular to standard triangular:
- Weibull to Extreme-value:
- Log logistic to lomax:
- logistic_Distribution.html Lomax to log logistic:
- Log logistic to logistic:
- TSP to triangular:
- von Mises to Uniform:
- Lévy to Cauchy:
- Lévy to Gaussian:
- Modified Power Series to Power series:
- BLD1 to Geometric:
- SOCR Home page: http://www.socr.ucla.edu
Translate this page: