# Formulas

(Difference between revisions)
 Revision as of 18:25, 24 April 2008 (view source)IvoDinov (Talk | contribs) (added Std and General Normal PDF)← Older edit Revision as of 18:34, 24 April 2008 (view source)IvoDinov (Talk | contribs) (added Chi-Square)Newer edit → Line 3: Line 3: * [[AP_Statistics_Curriculum_2007_Normal_Std |Standard Normal]] PDF: $f(x)= {e^{-x^2} \over \sqrt{2 \pi}}$ * [[AP_Statistics_Curriculum_2007_Normal_Std |Standard Normal]] PDF: $f(x)= {e^{-x^2} \over \sqrt{2 \pi}}$ * [[AP_Statistics_Curriculum_2007_Normal_Prob |General Normal]] PDF: $f(x)= {e^{{-(x-\mu)^2} \over 2\sigma^2} \over \sqrt{2 \pi\sigma^2}}$ * [[AP_Statistics_Curriculum_2007_Normal_Prob |General Normal]] PDF: $f(x)= {e^{{-(x-\mu)^2} \over 2\sigma^2} \over \sqrt{2 \pi\sigma^2}}$ + * [http://en.wikipedia.org/wiki/Chi-square_distribution Chi-Square] PDF: $\frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}\,$
• Standard Normal PDF: $f(x)= {e^{-x^2} \over \sqrt{2 \pi}}$
• General Normal PDF: $f(x)= {e^{{-(x-\mu)^2} \over 2\sigma^2} \over \sqrt{2 \pi\sigma^2}}$
• Chi-Square PDF: $\frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}\,$