SOCR Courses 2012 2013 Stat13 1 Lab3

From Socr

(Difference between revisions)
Jump to: navigation, search
(Problem 3)
(Problem 4)
Line 28: Line 28:
Plot the following distributions and take SNAPSHOTS of those denoted by (*):
Plot the following distributions and take SNAPSHOTS of those denoted by (*):
:Group A
:Group A
-
*Bin(8; 0,2) (*)
+
* X ~ Bin(8; 0,2) (*)
-
* Bin(15; 0,2)
+
* X ~ Bin(15; 0,2)
-
*Bin(25; 0,2)
+
*X~ Bin(25; 0,2)
-
*Bin(55; 0,2)
+
*X~ Bin(55; 0,2)
-
*Bin(95; 0,2) (*)
+
*X~ Bin(95; 0,2) (*)
:Group B
:Group B
-
*Bin(30; 0,05) (*)
+
*X~ Bin(30; 0,05) (*)
-
*Bin(30; 0,2)
+
*X~ Bin(30; 0,2)
-
* Bin(30; 0,5) (*)
+
*X~ Bin(30; 0,5) (*)
-
*Bin(30; 0,9) (*)
+
*X~ Bin(30; 0,9) (*)
-
*Bin(95; 1)
+
*X~ Bin(95; 1)
==== Problem 5 ====   
==== Problem 5 ====   

Revision as of 14:35, 22 April 2013

Contents

Stats 13.1 - Laboratory Activity 3

The binomial distribution is a probability distribution which is used to model the probability of obtaining k successes out of n total trials when we have exactly two, disjoint, possible outcomes, trials are independent and the probability of the outcomes is stable/constant.

You can access the applet for any of the SOCR distributions and select the Binomial Distribution calculator.

Binomial Distribution Activity

Problem 1

Suppose X ~ Binomial(10, 0.5) compute by hand:

  • P(X = 7)
  • E(X)
  • SD(X)

Problem 2

For X � Binomial(250; 0.65), use SOCR Distributions to compute:

  • P(X = 146)
  • P(X >=237)
  • P(39 < X < 127)

Problem 3

For X ~ Bin(32; 0.81), simplify the equations by hand and then use SOCR to compute.

  • P(X >= 24 \(\cap \) X < 20)
  • P(X >= 24 \(\cup \) X < 20)
  • P(X > 23 \(\cup \) X < 30)

Problem 4

Plot the following distributions and take SNAPSHOTS of those denoted by (*):

Group A
  • X ~ Bin(8; 0,2) (*)
  • X ~ Bin(15; 0,2)
  • X~ Bin(25; 0,2)
  • X~ Bin(55; 0,2)
  • X~ Bin(95; 0,2) (*)
Group B
  • X~ Bin(30; 0,05) (*)
  • X~ Bin(30; 0,2)
  • X~ Bin(30; 0,5) (*)
  • X~ Bin(30; 0,9) (*)
  • X~ Bin(95; 1)

Problem 5

Use your snapshots from question 4 to answer the following questions:

  • Describe how the distribution changes as the number of trials increases.
  • Describe how the distribution changes as the probability of success changes.
  • Write a few 'rules of thumbs' to help you remember the eff�ects of changing n and p.



Translate this page:

(default)

Deutsch

Español

Français

Italiano

Português

日本語

България

الامارات العربية المتحدة

Suomi

इस भाषा में

Norge

한국어

中文

繁体中文

Русский

Nederlands

Ελληνικά

Hrvatska

Česká republika

Danmark

Polska

România

Sverige

Personal tools