SOCR EduMaterials Activities ApplicationsActivities BlackScholesOptionPricing

From Socr

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
== Black-Scholes option pricing model - Convergence of binomial ==
+
== [[SOCR_EduMaterials_ApplicationsActivities | SOCR Applications Activities]] - Black-Scholes Option Pricing Model (with Convergence of Binomial) ==
-
* '''Description''':  You can access the Black-Scholes applet at http://www.socr.ucla.edu/htmls/app/ .
+
===Description===
 +
You can access the Black-Scholes Option Pricing Model applet at [http://www.socr.ucla.edu/htmls/app/ the SOCR Applications Site], select ''Financial Applications'' --> ''BlackScholesOptionPricing''.
-
* Black-Scholes option pricing formula: <br>
+
===Black-Scholes option pricing formula===
The value <math>C</math> of a European call option at time <math>t=0</math> is:
The value <math>C</math> of a European call option at time <math>t=0</math> is:
-
<math>
+
: <math> C=S_0 \Phi (d_1) - \frac{E}{e^{rt}} \Phi(d_2) </math>
-
C=S_0 \Phi (d_1) - \frac{E}{e^{rt}} \Phi(d_2)
+
: <math> d_1=\frac{ln(\frac{S_0}{E})+(r+\frac{1}{2} \sigma^2)t} {\sigma \sqrt{t}}
</math>
</math>
-
<br>
+
: <math> d_2=\frac{ln(\frac{S_0}{E})+(r-\frac{1}{2} \sigma^2)t} {\sigma \sqrt{t}}=d_1-\sigma \sqrt{t} </math>
-
<math>
+
 
-
d_1=\frac{ln(\frac{S_0}{E})+(r+\frac{1}{2} \sigma^2)t}
+
-
{\sigma \sqrt{t}}
+
-
</math>
+
-
<br>
+
-
<math>
+
-
d_2=\frac{ln(\frac{S_0}{E})+(r-\frac{1}{2} \sigma^2)t}
+
-
{\sigma \sqrt{t}}=d_1-\sigma \sqrt{t}
+
-
</math>
+
-
<br> 
+
Where, <br>
Where, <br>
-
<math>S_0</math>    Price of the stock at time <math>t=0</math> <br>
+
: <math>S_0</math>    Price of the stock at time <math>t=0</math> <br>
-
<math>E</math>      Exercise price at expiration <br>
+
: <math>E</math>      Exercise price at expiration <br>
-
<math>r</math>      Continuously compounded risk-free interest <br>
+
: <math>r</math>      Continuously compounded risk-free interest <br>
-
<math>\sigma</math> Annual standard deviation of the returns of the stock <br>
+
: <math>\sigma</math> Annual standard deviation of the returns of the stock <br>
-
<math>t</math>      Time to expiration in years <br>
+
: <math>t</math>      Time to expiration in years <br>
-
<math>\Phi(d_i)</math>  Cumulative probability at <math>d_i</math> of the standard normal distribution <math>N(0,1)</math>  <br>
+
: <math>\Phi(d_i)</math>  Cumulative probability at <math>d_i</math> of the standard normal distribution <math>N(0,1)</math>  <br>
-
* Binomial convergence to Black-Scholes option pricing formula: <br>
+
===Binomial convergence to Black-Scholes option pricing formula===
-
The binomial formula converges to the Black-Scholes formula when
+
The binomial formula converges to the Black-Scholes formula when the number of periods <math>n</math> is large.  In the example below we value the call option using the binomial formula for different values of <math>n</math> and also using the Black-Scholes formula.  We then plot the value of the call (from binomial) against the number of periods <math>n</math>.  The value of the call using Black-Scholes remains the same regardless of <math>n</math>.  The data used for this example are:
-
the number of periods <math>n</math> is large.  In the example below we value the call option using the binomial formula for different values of <math>n</math> and also using the Black-Scholes formula.  We then plot the value of the call (from binomial) against the number of periods <math>n</math>.  The value of the
+
: <math>S_0=\$30</math>, <math>E=\$29 </math>, <math>R_f=0.05</math>, <math>\sigma=0.30 </math>,  
-
call using Black-Scholes remains the same regardless of <math>n</math>.  The data used for this example are:
+
-
<math>S_0=\$30</math>, <math>E=\$29 </math>, <math>R_f=0.05</math>, <math>\sigma=0.30 </math>,  
+
<math>\mbox{Days to expiration}=40</math>. <br>
<math>\mbox{Days to expiration}=40</math>. <br>
 +
* For the binomial option pricing calculations we divided the 40 days into intervals from 1 to 100 (by 1).
* For the binomial option pricing calculations we divided the 40 days into intervals from 1 to 100 (by 1).
-
* The snapshot below from the SOCR Black Scholes Option Pricing model applet shows the path of the stock.
+
* The snapshot below from the [http://www.socr.ucla.edu/htmls/app/ SOCR Black Scholes Option Pricing model applet] shows the path of the stock.
<br>
<br>
Line 41: Line 32:
<center>[[Image: Christou_black_scholes_binomial.jpg|600px]]</center>
<center>[[Image: Christou_black_scholes_binomial.jpg|600px]]</center>
-
<br>
+
===References===
-
* The materials above was partially taken from <br>
+
The materials above was partially taken from:
-
''Modern Portfolio Theory'' by Edwin J. Elton, Martin J. Gruber, Stephen J. Brown, and William N. Goetzmann, Sixth Edition, Wiley, 2003, and <br>
+
* ''Modern Portfolio Theory'' by Edwin J. Elton, Martin J. Gruber, Stephen J. Brown, and William N. Goetzmann, Sixth Edition, Wiley, 2003.
-
''Options, Futues, and Other Derivatives'' by John C. Hull, Sixth Edition, Pearson Prentice Hall, 2006.
+
* ''Options, Futues, and Other Derivatives'' by John C. Hull, Sixth Edition, Pearson Prentice Hall, 2006.
 +
* [http://www.socr.ucla.edu/htmls/app/ SOCR Applications Site]
 +
 
 +
{{translate|pageName=http://wiki.stat.ucla.edu/socr/index.php?title=SOCR_EduMaterials_Activities_ApplicationsActivities_BlackScholesOptionPricing}}

Revision as of 18:55, 3 August 2008

Contents

SOCR Applications Activities - Black-Scholes Option Pricing Model (with Convergence of Binomial)

Description

You can access the Black-Scholes Option Pricing Model applet at the SOCR Applications Site, select Financial Applications --> BlackScholesOptionPricing.

Black-Scholes option pricing formula

The value C of a European call option at time t = 0 is:

 C=S_0 \Phi (d_1) - \frac{E}{e^{rt}} \Phi(d_2)
 d_1=\frac{ln(\frac{S_0}{E})+(r+\frac{1}{2} \sigma^2)t} {\sigma \sqrt{t}}
 d_2=\frac{ln(\frac{S_0}{E})+(r-\frac{1}{2} \sigma^2)t} {\sigma \sqrt{t}}=d_1-\sigma \sqrt{t}

Where,

S0 Price of the stock at time t = 0
E Exercise price at expiration
r Continuously compounded risk-free interest
σ Annual standard deviation of the returns of the stock
t Time to expiration in years
Φ(di) Cumulative probability at di of the standard normal distribution N(0,1)

Binomial convergence to Black-Scholes option pricing formula

The binomial formula converges to the Black-Scholes formula when the number of periods n is large. In the example below we value the call option using the binomial formula for different values of n and also using the Black-Scholes formula. We then plot the value of the call (from binomial) against the number of periods n. The value of the call using Black-Scholes remains the same regardless of n. The data used for this example are:

S_0=\$30, E=\$29 , Rf = 0.05, σ = 0.30,

Days to expiration = 40.

  • For the binomial option pricing calculations we divided the 40 days into intervals from 1 to 100 (by 1).


References

The materials above was partially taken from:

  • Modern Portfolio Theory by Edwin J. Elton, Martin J. Gruber, Stephen J. Brown, and William N. Goetzmann, Sixth Edition, Wiley, 2003.
  • Options, Futues, and Other Derivatives by John C. Hull, Sixth Edition, Pearson Prentice Hall, 2006.
  • SOCR Applications Site


Translate this page:

(default)

Deutsch

Español

Français

Italiano

Português

日本語

България

الامارات العربية المتحدة

Suomi

इस भाषा में

Norge

한국어

中文

繁体中文

Русский

Nederlands

Ελληνικά

Hrvatska

Česká republika

Danmark

Polska

România

Sverige

Personal tools