UQuadraticDistribuionAbout

From Socr

Revision as of 18:55, 5 November 2007 by Jenny (Talk | contribs)
(diff) ← Older revision | Current revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Contents

About_pages_for_SOCR_Distributions - U-Quadratic Distribution

Description

The U quadratic distribution is defined by the following density function

 f(x)=\alpha \left ( x - \beta \right )^2, \forall x \in [a , b], a < b,

where the relation between the two pairs of parameters (domain-support, a and b) and (range/offset α and β) are given by the following two equations

(gravitational balance center) \beta = {b+a \over 2}, and
(vertical scale) \alpha = {3 \over 2 \left ( b-a \right )^3}.


Properties

  • Support Parameters: a < b \in (-\infty,\infty)
  • Range/Offset Parameters: \alpha \in (0,\infty) and \beta \in (-\infty,\infty)
  • PDF: f(x)=\alpha \left ( x - \beta \right )^2, \forall x \in [a , b]
  • CDF F(x)={\alpha \over 3} \left ( (x - \beta)^3 + (\beta - a)^3 \right ), \forall x \in [a , b]
  • Mean: {a+b \over 2}
  • Median: {a+b \over 2}
  • Modes: a and b
  • Variance:  {\alpha \over 5} \left ( (b-\beta)^5 - (a-\beta)^5 \right )
  • Skewness: TBD
  • Kurtosis: TBD
  • MGF: TBD

Interactive U Quadratic Distribution

You can see the interactive U Quadratic distribution by going to SOCR Distributions and selecting from the drop down list of distributions U Quadratic. Then follow the Help instructions to dynamically set parameters, compute critical and probability values using the mouse and keyboard.




Translate this page:

(default)

Deutsch

Español

Français

Italiano

Português

日本語

България

الامارات العربية المتحدة

Suomi

इस भाषा में

Norge

한국어

中文

繁体中文

Русский

Nederlands

Ελληνικά

Hrvatska

Česká republika

Danmark

Polska

România

Sverige

Personal tools