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What are HMMs?

A Hidden Markov model (HMM) is a stochastic signal model
which has three assumptions:

The observation at time t, Ot , was generated by some process
whose state, St , is hidden.

The hidden process satisfies the first-order Markov property:
given St−1, St is independent of Si for any i < t − 1.

The hidden state variable is discrete.
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History of HMMs

Introduced in 1966 by Baum and Petrie

Baum and his colleagues published HMM training for a single
observation, 1970

Levonson, Rabiner, and Sondhi presented HMM training for
multiple independent observations, 1983

Li, Parizeau, and Plamondo introduced HMM traning for
multiple observations, 2000

Nguyet Nguyen Hidden Markov Model for High Frequency Data



Introduction of HMMs HMM and its three problems Financial Applications of HMMs Can we use HMMs to make money?

Some applications of HMMs

Figure : 1. Speech recognition 2. Bioinformatics 3. Finance
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Elements of HMM

Observation data, O = (Ot), t = 1, ..,T

Hidden states, S = (Si ), i = 1, 2, ...,N

Hidden state sequence: Q = (qt), t = 1, ...,T

Transition matrix A

aij = P(qt = Sj |qt−1 = Si ), i , j = 1, 2, ...,N

Observation symbols per state, V = (vk), k = 1, 2, ...,M

The observation probability

B : bi (k) = P(Ot = vk |qt = Si ), i = 1, 2, ...,N; k = 1, 2, ...,M

Initial probabilities, vector p, of being in state Si at t = 1

pi = P(q1 = Si ), i = 1, 2, ...,N
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Hidden Markov Model

S2

S1 S1

S2

t t+1

a11

a12

a21

a22

Ot Ot+1

b1(Ot)

b2(Ot)

Parameters of HMM: λ = {A,B, p}
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Three problems and corresponding solutions for HMMs

1 Given (O, λ), compute the probability of observations, P(O|λ)

Forward, backward algorithm

2 Given (O, λ), simulate the most likely hidden states, Q

Viterbi algorithm

3 Given O, calibrate HMM parameters, λ

Baum-Welch algorithm
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Forward Algorithm

Define the joint probability αt(i) = P(O1,O2, ...,Ot , qt = Si |λ)



Si

t-1 t

t(i)

forward
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Forward algorithm

Initialization, α1(i) = pibi (O1) for i = 1, ...,N

For t = 2, 3, ...,T , for j = 1, ...,N

αt(j) =

[
N∑
i=1

αt−1(i)aij

]
bj(Ot),

P(O|λ) =
∑N

i=1 αT (i)
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Backward Algorithm

Define the conditional probability
βt(j) = P(Ot+1,Ot+2, ..,OT |qt = Sj , λ), for j = 1, ...,N


Sj

t+1 t+2

t+1(j)

backward
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Backward Algorithm

Algorithm

Initialization, βT (i) = 1 for i = 1, ...,N

For t = T − 1,T − 2, ..., 1, for i = 1, ...,N

βt(i) =
N∑
j=1

aijbj(Ot+1)βt+1(j)

P(O|λ) =
∑N

i=1 pibi (O1)β1(i)
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Choose economics indicators

1 Inflation (CPI)

2 Credit Index

3 Yield Curve

4 Commodity

5 Dow Jones Industrial Average
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Training and Predicting Process

Using the variables above:

Use HMM for single and multiple observation data with
normal distributions.

Calibrate Markov-switching model parameters using
Baum-Welch algorithm

Define state or regime 2 with lower mean/variance

Use the obtained parameters to predict the corresponding
states (regimes), predict the upcoming regime.
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Results

HMM Bear Market (monthly 5/2006−5/2013)
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Figure : Dow Jones observations vs probabilities of being in the bear
market
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Results

Figure : Forecast bear market using CPI indicator
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Results

HMM Forecast Bear Market (monthly 10/2006−5/2013)
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Figure : Forecast bear market using multiple observations
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S&P 500, a stock market index based on the market
capitalizations of 500 large companies having common stock
listed on the NYSE or NASDAQ. Monthly percentage changes
from February 1947 through June 2013.

SPY

GOOG

FORD

AAPL

GE
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Training and Predicting Process

Using the variables above:

Use HMM for single and multiple observation data with
normal distributions.

Calibrate Markov-switching model parameters using
Baum-Welch algorithm

Use the obtained parameters to predict stock prices for the
next trading period.
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Figure : Forecast S&P500 close prices using single observation
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Results
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Figure : Forecast S&P500 closing prices using multiple observations
(open-close-high-low)
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Results
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Figure : Forecast SPY bid price in tick by tick
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Can we use HMMs to make money?

Symbol Initial Investment ($) Earning ($) Earning %

SPY 9,000.00 2050.66 22.79

GOOG 30,000.00 29,036.4 96.79

FORD 250.00 10.10 4.04

AAPL 950.00 19.06 2.01

GE 1,700.00 490.00 28.82

TOTAL 41,900.00 31,606.22 75.43

Table : One year daily stock trading portfolio from December 2012 to
December 2013
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Thank you!

Nguyet Nguyen: nnguyen@math.fsu.edu

Department of Mathematics, Florida State University
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