Hidden Markov Model for High Frequency Data

Nguyet Nguyen

Department of Mathematics, Florida State University

Joint Math Meeting, Baltimore, MD, January 15

・ 同 ト ・ ヨ ト ・ ヨ ト

What are HMMs?

A Hidden Markov model (HMM) is a stochastic signal model which has three assumptions:

- The observation at time t, O_t , was generated by some process whose state, S_t , is **hidden**.
- The hidden process satisfies the first-order Markov property: given S_{t-1} , S_t is independent of S_i for any i < t 1.
- The hidden state variable is discrete.

・ 同 ト ・ ヨ ト ・ ヨ ト

History of HMMs

- Introduced in 1966 by Baum and Petrie
- Baum and his colleagues published HMM training for a single observation, 1970
- Levonson, Rabiner, and Sondhi presented HMM training for multiple independent observations, 1983
- Li, Parizeau, and Plamondo introduced HMM traning for multiple observations, 2000

(4 回) (4 回) (4 回)

Some applications of HMMs

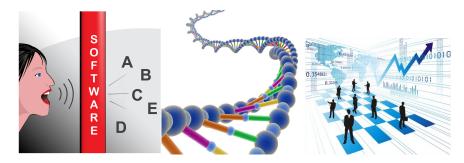


Figure : 1. Speech recognition 2. Bioinformatics 3. Finance

A (1) > A (1) > A

< E

Elements of HMM

- Observation data, $O = (O_t)$, t = 1, .., T
- Hidden states, $S = (S_i), i = 1, 2, ..., N$
- Hidden state sequence: $Q = (q_t), t = 1, ..., T$
- Transition matrix A

$$a_{ij} = P(q_t = S_j | q_{t-1} = S_i), \ i, j = 1, 2, ..., N$$

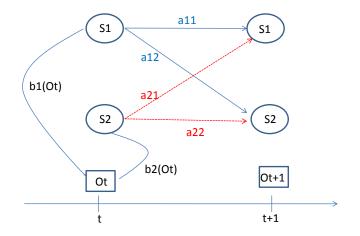
- Observation symbols per state, $V = (v_k), k = 1, 2, ..., M$
- The observation probability

 $B: b_i(k) = P(O_t = v_k | q_t = S_i), i = 1, 2, ..., N; k = 1, 2, ..., M$

• Initial probabilities, vector p, of being in state S_i at t = 1

$$p_i = P(q_1 = S_i), \ i = 1, 2, ..., N$$

Hidden Markov Model



Parameters of HMM: $\lambda = \{A, B, p\}$

イロン イヨン イヨン イヨン

3

Three problems and corresponding solutions for HMMs

• Given (O, λ) , compute the probability of observations, $P(O|\lambda)$

向下 イヨト イヨト

Three problems and corresponding solutions for HMMs

• Given (O, λ) , compute the probability of observations, $P(O|\lambda)$

Forward, backward algorithm

向下 イヨト イヨト

• Given (O, λ) , compute the probability of observations, $P(O|\lambda)$

Forward, backward algorithm

2 Given (O, λ) , simulate the most likely hidden states, Q

(日) (日) (日)

• Given (O, λ) , compute the probability of observations, $P(O|\lambda)$

Forward, backward algorithm

2 Given (O, λ) , simulate the most likely hidden states, Q

Viterbi algorithm

▲圖▶ ▲屋▶ ▲屋▶

• Given (O, λ) , compute the probability of observations, $P(O|\lambda)$

Forward, backward algorithm

2 Given (O, λ) , simulate the most likely hidden states, Q

Viterbi algorithm

③ Given O, calibrate HMM parameters, λ

▲圖▶ ★ 国▶ ★ 国▶

• Given (O, λ) , compute the probability of observations, $P(O|\lambda)$

Forward, backward algorithm

2 Given (O, λ) , simulate the most likely hidden states, Q

Viterbi algorithm

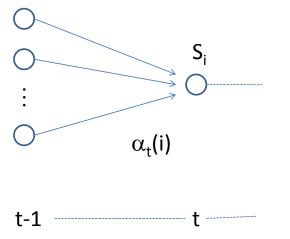
③ Given O, calibrate HMM parameters, λ

Baum-Welch algorithm

・ 同 ト ・ ヨ ト ・ ヨ ト

Forward Algorithm

Define the joint probability $\alpha_t(i) = P(O_1, O_2, ..., O_t, q_t = S_i | \lambda)$



∢ ≣ ≯

< ≣ >

Forward algorithm

• Initialization,
$$\alpha_1(i) = p_i b_i(O_1)$$
 for $i = 1, ..., N$

• For
$$t = 2, 3, ..., T$$
, for $j = 1, ..., N$

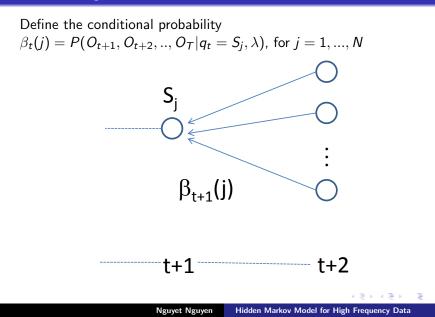
$$\alpha_t(j) = \left[\sum_{i=1}^N \alpha_{t-1}(i) a_{ij}\right] b_j(O_t),$$

• $P(O|\lambda) = \sum_{i=1}^{N} \alpha_T(i)$

イロト イヨト イヨト イヨト

Э

Backward Algorithm



Backward Algorithm

Algorithm

• Initialization, $\beta_T(i) = 1$ for i = 1, ..., N

• For
$$t = T - 1, T - 2, ..., 1$$
, for $i = 1, ..., N$

$$\beta_t(i) = \sum_{j=1}^N a_{ij} b_j(O_{t+1}) \beta_{t+1}(j)$$

•
$$P(O|\lambda) = \sum_{i=1}^{N} p_i b_i(O_1) \beta_1(i)$$

・ロト ・回ト ・ヨト ・ヨト

Э

Choose economics indicators

- Inflation (CPI)
- 2 Credit Index
- Sield Curve
- Commodity
- Ow Jones Industrial Average

(本間) (本語) (本語)

Training and Predicting Process

Using the variables above:

- Use HMM for single and multiple observation data with normal distributions.
- Calibrate Markov-switching model parameters using Baum-Welch algorithm
- Define state or regime 2 with lower *mean/variance*
- Use the obtained parameters to predict the corresponding states (regimes), predict the upcoming regime.

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction of HMMs	HMM and its three problems	Financial Applications of HMMs	Can we use HMMs to make money?
		00000000	

HMM Bear Market (monthly 5/2006-5/2013)

Results

2 -Normalized data c T Ŷ DJIA Υ NDR Bear Market HMM Bear Marke 2007 2008 2009 2010 2011 2012 2013 Time

 $\ensuremath{\mathsf{Figure}}$: Dow Jones observations vs probabilities of being in the bear market

イロト イヨト イヨト イヨト

Results



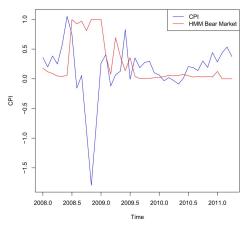


Figure : Forecast bear market using CPI indicator

Nguyet Nguyen Hidden Markov Model for High Frequency Data

イロン 不同と 不同と 不同と

Results

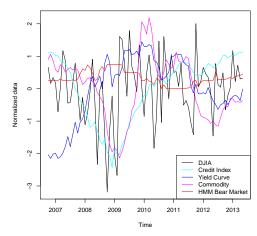


Figure : Forecast bear market using multiple observations

Nguyet Nguyen Hidden Markov Model for High Frequency Data

イロン イヨン イヨン イヨン

Introduction of HMMs	HMM and its three problems	Financial Applications of HMMs	Can we use HMMs to make money?
		000000000	

- *S&P* 500, a stock market index based on the market capitalizations of 500 large companies having common stock listed on the NYSE or NASDAQ. Monthly percentage changes from February 1947 through June 2013.
- SPY
- GOOG
- FORD
- AAPL
- GE

< ∃ >.

Training and Predicting Process

Using the variables above:

- Use HMM for single and multiple observation data with normal distributions.
- Calibrate Markov-switching model parameters using Baum-Welch algorithm
- Use the obtained parameters to predict stock prices for the next trading period.

・ 同 ト ・ ヨ ト ・ ヨ ト

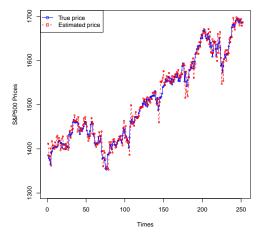


Figure : Forecast *S*&*P*500 close prices using single observation

▲ □ ► ▲ □ ►

< ≣⇒

Results

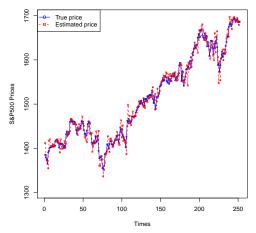
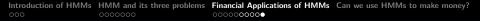
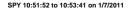


Figure : Forecast *S*&*P*500 closing prices using multiple observations (open-close-high-low)

Nguyet Nguyen Hidden Markov Model for High Frequency Data



Results



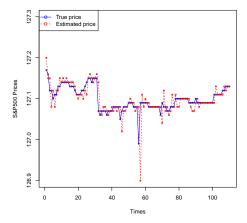


Figure : Forecast SPY bid price in tick by tick

<ロ> (四) (四) (日) (日) (日)

Can we use HMMs to make money?

Symbol	Initial Investment (\$)	Earning (\$)	Earning %
SPY	9,000.00	2050.66	22.79
GOOG	30,000.00	29,036.4	96.79
FORD	250.00	10.10	4.04
AAPL	950.00	19.06	2.01
GE	1,700.00	490.00	28.82
TOTAL	41,900.00	31,606.22	75.43

Table : One year daily stock trading portfolio from December 2012 to December 2013

イロン イヨン イヨン イヨン

Thank you!

Nguyet Nguyen: nnguyen@math.fsu.edu

Department of Mathematics, Florida State University