Consensus Spectral Techniques and Machine Learning

Debra Knisley and Jeff Knisley

@ Tools and Training: Initial comments, and then some software tools

Institute for Quantitative Biology @ Modeling: Where Consensus Spectral Techniques fit in.
East Tennessee State University

AMS Special Session on Big Data: Mathematical and
Statistical Modeling, Tools, Services, and Training
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Big Data is complex Big Data Requires Different types of Models

@ A very large — and complex — data set or network

o Complex (roughly) means High dimensional + multi-scale (think . The earth ( ~ 6 x 10°* kg )2'35 to a human ( &~ 10% kg ) as a human
“fractals in ™" for large n) is to a protein (=~ 5.5 x 10™* kg )
o Complexity is important in part due to emergence (roughly) e Earth-Moon gravitational system (two body problem):
@ Smaller scales influence what happens on larger scales @ Ignores the billions of humans running around on the earth
@ Phenological (large scale) as a consequence of genomic or proteomic o is a descriptive model (i.e., single scale)
(small scale) o Proteomics considers both the human and protein scales
@ Epidemiological (large scale) as a consequence of local interactions simultaneously
(small scale) @ Requires predictive models that allow multi-scale
@ Large data sets focused on small scale activities (e.g., microarrays) @ Most predictive models are algorithms
used to explain large scale behaviors @ Machine learning is a type of predictive modeling

@ Another Implication: Every Big Data Problem is Unique!!
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Big Data and Software/Analysis Togaware Rattle ( http://rattle.togaware.com/ )

o A fairly standard process
@ Exploration ( Plots, histograms, basic stats, etc)
@ Pre-processing ( rescaling, centering, normalizing, missing data, etc) @ Great, Great tool — Easy to use, easy to customize (generates R code
© Predictive Modeling Algorithm ( clustering/classification/regression) available in Log pane )
@ Metrics ( How did we do?7? )

) ] @ Only for relatively small data sets with fairly limited complexity
@ Software tools implement this process

e Togaware Rattle ( http://rattle.togaware.com/ ) based on R
o sklearn (http://scikit-learn.org/stable/ ) based on Python
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SKlearn ( http://scikit-learn.org/stable/ ) Preprocessing is very Important!!

@ Principal component analysis (PCA) is a statistical procedure that
uses orthogonal transformation to convert a set of observations of
possibly correlated variables into a set of values of linearly
uncorrelated variables called principal components.

@ Another great tool, but requires knowledge of Python and various
libraries such as Numpy, Scipy, Pandas

@ How SKLearn is used in general:

© Data as Numpy Matrices ( Features/Factors, Class )
@ from sklearn import preprocessing # pre-process the data

@ Independent component analysis (ICA) is a computational method
for separating a multivariate signal into additive subcomponents by

© from sklearn import cross_validation # train/validation /test assuming that the subcomponents are non-Gaussian signals and that
partitioning they are all statistically independent from each other.
@ Model = MachineLearningObject () @ Goal: Representation of the Data that reduces dimensionality and

Model fit( TrainingFactors, TrainingClass )
TestingClassPredictions = Model.predict( TestingFactors )
© from sklearn import metrics

redundancy
@ Consensus Model: A representation that quantifies what a collection
of observations have in common
e Across an entire collection of data (unsupervised)
e Within individual classes of a set of labelled data (supervised)
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Consensus Spectrum Protein Example

Example: Cytochrome C functional group plays (more or less) the same
role in all living cells.

@ Some History: Protein coding regions of DNA predicted from 3-base e Human: GDVEKGKKIFIMKCSQCHTVEKGGKHKTGPNLHGLFGRK
periodicity of coding regions via Fourier Transforms TGQAPGYSYTAANKNKGIWGEDTLMEYLENPKKYIPGTKMIFVGI
o Key concept: Homologous families = Collections with similar KKKEERADLIAYLKKATN
characteristics @ Horse: GDVEKGKKIFVQKCAQCHTVEKGGKHKTGPNLHGLFGRK
e Various methods used to construct a single representative genome from TGQAPGFTYTDANKNKGITWKEETLMEYLENPKKYIPGTKMIFAGI
a homologous family KKKTEREDLIAYLKKATN
@ Similar methods for residue chains ° Dog: GDVEKGKKIFVQKCAQCHTVEKGGKHKTGPNLHGLFGRK
o Transform sequences into the frequency domain (via Fourier Transform) TGQAPGFSYTDANKNKGITWGEETLMEYLENPKKYIPGTKMIFAGI
@ Convolution in the time domain = multiplication in the frequency KKTGERADLIAYLKKATK
domain @ Wheat: GNPDAGAKIFKTKCAQCHTVDAGAGHKQGPNLHGLFGRQ
e Product of two spectral representations retains only the information SGTTAGYSYSAANKNKAVEWEENTLYDYLLNPKKYIPGTKMVFPGL
the sequences have in common KKPQDRADLIAYLKKATS

° Rice: GNPKAGEKIFKTKCAQCHTVDKGAGHKQGPNLNGLFGRQ
SGTTPGYSYSTANKNMAVIWEENTLYDYLLNPKKYIPGTKMVFPGL
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The General Approach Example: Electron lon Interaction Potententials

@ Signal Processing: Amino acid sequence GDVEKGKK... s @ Electron lon Interaction Potentials (EIIP) can be used to find protein
converted to a sequence {xk}zlzl , where each x; is a (numerical) “hot spots” —i.e., regions of proteins that are most likely to bind to
amino acid descriptor . other proteins

@ Z-transform: The Z-transform of a sequence {x,,},’yzl is a function o Each Amino Acid (AA) has a specific EIIP number
of the form o For example, GDVEKGKK... is converted into

N
3% (z) _ Zxkz_k 0.005, 0.1263, 0.0057, 0.07610, 0.0371, 0.005, 0.0371, 0.0371,...
k=1 e Method: For a large family of functionally related proteins (such as

o Frequency Domain: For z = et the quantity Cytochrome C), we do the following:
@ Use cross-correlation to find a consensus model for the entire family
o Cross-Correlation converts two sequences {xx}, {yx} into a sequence

N N
Pw) =X (@) =2) Y xixjcos ((k—j)w) {wi} via
k=1k=1

n
. . Wi = Z Xj Yj+k
is the power spectrum of the signal. P

@ Consensus is P; (w) P, (w) P (w) , forj =1,..., m sequences @ Consensus model is a model for the entire functional family that is

. . formed from cross-correlations
in the Homologous family p
) 7 ) @ Power spectrum of consensus model then reveals the “fundamental
@ Consensus is a generalization of cross-correlation of sequences frequency” of the protein family
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Example: Electron lon Interaction Potententials But are we loosing too much information?
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First Five Cytochrome C Spectra

Figure : Spectra of the First Five Cytochrome C Sequences
Figure : Consensus spectrum of the Cytochrome C functional group (EIIP) ( from

Ramachandran. 2008
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But are we loosing too much information? But are we loosing too much information?
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Figure : Spectra of the Next Five Cytochrome C Sequences Figure : Spectra of the Last 10 Cytochrome C Sequences
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Generalizing the Method The Arithmetic or Zero Mean (AZM)

o (Spectral) average over the intersection of the (frequency) support of
the observations.

@ That is, we only want averages to reflect processes common
throughout the observations (the homologous family)

@ Use a resampling approach

o Randomly choose a subset of sequences
o Compute consensus spectrum (via P1 (w) P2 (w) - ... Pm (w))
o The average over resamples is consensus spectrum

o Issue: No way to map the consensus spectrum back to the sequence

domain "
o Use something other than the product I""-- Disenation ™ Ohsanation "]
o That vanishes if any datum vanishes O L Mo i >
— e —
e In particular, use some type of mean —
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The Arithmetic or Zero Mean (AZM)

o (Spectral) average over the intersection of the (frequency) support of
the observations.

@ That is, we only want averages to reflect processes common
throughout the observations (the homologous family)
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The Arithmetic or Zero Mean (AZM)

o (Spectral) average over the intersection of the (frequency) support of
the observations.

@ That is, we only want averages to reflect processes common
throughout the observations (the homologous family)
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The Arithmetic or Zero Mean (AZM)

o (Spectral) average over the intersection of the (frequency) support of
the observations.

@ That is, we only want averages to reflect processes common
throughout the observations (the homologous family)
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The Arithmetic or Zero Mean (AZM)

o (Spectral) average over the intersection of the (frequency) support of
the observations.

@ That is, we only want averages to reflect processes common
throughout the observations (the homologous family)
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The Arithmetic or Zero Mean (AZM)

o (Spectral) average over the intersection of the (frequency) support of
the observations.

@ That is, we only want averages to reflect processes common
throughout the observations (the homologous family)

Institute for Quantitative Biology Consensus Spectral Techniques

JMM: January, 2014 23 / 42

Institute for Quantitative Biology Consensus Spectral Techniques JMM: January, 2014 22 / 42

The Arithmetic or Zero Mean (AZM)

o (Spectral) average over the intersection of the (frequency) support of
the observations.

@ That is, we only want averages to reflect processes common
throughout the observations (the homologous family)

| Aperage Only over these "factors” |
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o Let w: —  such that
@ Desired Properties of an AZM:

o If x| = |xj|, i,j=1,...,n, and |x;| % 0, then w(0) =0, w (0) #0,
AZM (x1, .. .xn) ~ X1+';7'+Xn with w (x)  0if x # 0 and
o If x; =0forsomei=1,...n, and p =1, then XIL"‘OOW(X) =1

AZM (x1,...xp) =0

@ For such a w, define

o If x, ~ 0 for some r in {1,...,n}, then
AZM (x1, ... xn) ~ 0 ) 0 if xj =0 for some j
AZM,, (x1, ... xp) = {59 1wt .
o The function AZM (xi, ..., Xp) is smooth w (X1, %) WL otherwise
J_El kI;[J_W(Xk)
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Expected Value Generalized Consensus Modeling

o Simplifies to ° G;\t/er; zlx(shgmo)logous family {x;}; ( residue chain or DNA or
networks or...

0 if x; =0 for some j o Spectral: The family w.r.t. to a new basis {ej};zlas
AZM, £
w(x) = enee P W(:j) otherwise X =) ai e
Fw() o BootStrapping: For each j, bootstrap over AZM (a, . ..., a;,j) .
where s is the sample size for each bootstrap resample
. f Spectrum: If ¢; is the bootstrap mean, then the sequence {c-}n is
o Natural to define the expected value of a function f by © Spec g P ' q JJj=1
the consensus spectrum of the homologous family
if xj =0 for some j o Model: The consensus model is then defined to be
o 1)
E(f(x)) = L C:ZCjej
(F(x)) o (1’) otherwise
j);lm @ Repeat for classes, use projections, etc, to produce an ICA-like
- J

representation of the data
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AZM + Resampling = Consensus Spectrum Consensus Spectrum for a different w(x)
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Figure : Consensus spectrum of the Cytochrome C functional group (EIIP) Figure : Another Consensus spectrum of the Cytochrome C functional group

(EIIP)
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Another Approach Another Approach

@ For fixed p 0, p ~ 0 define
@ In general, we can write

0 if xj =0 for some j
P
" 0 if x; =0 for some j
AZM (Xl, .. .X,,) = j)EIX/ kl;[ij . -1 !
- it otherwise AZM (x1,...xn) = L LN :
Y| TT x« Y 4 » P otherwise
=1 =t =1
Useful, but it is not smooth. o lfp=1and xj#0forallj=1,...,n, then
@ Examples: (a#0, b#0,¢c #0)
1< x
_ p p j
a|b|p+|a|pb a/|a|p+b/|b|p AZM(Xl,...Xn)—H(|X1| y-..y|Xn| )(;Z|X |p>
AZM (a, b) = 5 — = 5 5 =1 Xk
|b]” + |a| 1/ |al” + 1/ |b|
AZM (3, b, ) albc|P + b|ac|P + c|ab|? where H (xi,...xp) is the harmonic mean.

|bc|P + |ac|P + |ablP
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Notice that 77 & tanh (x) for x # 0 The AZM

y 1 .

o Consequently, we define (one variation — there are many)

n
AZM (x1,...x0) = H (x|, ..., [xa]P) Z |Xk|1_p tanh (ax;) (1)
=1

e This is a smooth function at 0
o The parameter a can be used to tune the AZM

o Equation (1) looks like a simple neural network
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M Soeyyepn po | ATH e

From (Wright, 2006):

This investigation used high-density oligonucleotide microarray analysis of
nasal respiratory epithelium to investigate the molecular basis of +
phenotypic differences in CF by (1) identifying differences in gene

expression between DeltaF508 homozygotes in the most severe 20th

percentile of lung disease by forced expiratory volume in 1 s and those in : i L : ) .
the most mild 20th percentile of lung disease and (2) identifying ATH fosreaim e - L ____ ol
differences in gene expression between DeltaF508 homozygotes and | .|

age-matched non-CF control subjects.

20 subjects — Microarray Data from Epithelium

3 classes — Normal (11), Mild (4), Severe(5) i
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The 3 diagnoses Unknown versus Severe Cystic Fibrosis
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Unknown Versus Mild Cystic Fibrosis Unknown Vers ormal
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Conclusions Any Questions

o Consensus Spectrum is based on Signal Processing and Bio-electrical
Parameters
o Can be generalized to a Linear Algebra Context (change of basis)
o Can be based on (some) non-physical measurements

@ Consensus Models + Spectrum extend the Original by Thank you!

e Incorporating resampling with a non-standard mean (AZM)
o Using vertex-weighted graph invariants instead of biophysical
parameters

o Future Directions: Characterizing what a consensus model tells us
mathematically about a homologous family of sequences
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