Covariance Matrix Adaptation Evolution Strategy for Link Prediction in Dynamic Social Networks

Catherine A. Bliss, Morgan R. Frank, Christopher M. Danforth, & Peter Sheridan Dodds

Background Data Reciprocal reply networ Link prediction Similarity indices Evolutionary computatio Results

Data Recipi

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Background Data Reciprocal reply networks Link prediction Similarity indices Evolutionary computation Results Conclusions

Background Data Reciprocal reply networks

・ロット 御マス 山下 一川 しょう

・ロマ・山マ・山マ・山マ・

Background Data Reciprocal reply network Link prediction Similarly indices Evolutionary computatio Results Conclusions

・ロマ・山下・山川・山下・山下・山

Results Conclusions

・ロ・・日・・日・・日・・日・

Data

40,000 tweets (100MB) / min. 50 million tweets (150GB) / day 50 billion tweets (100TB) / 5+ years

・ロト・日本・山本・山本・日・ うくの

Hedonometer.org *** Googa 40,000 tweets (100MB) / min. bit.ly ⊐€ 50 million tweets (150GB) / day u 🎤

50 billion tweets (100TB) / 5+ years

Similarity indices Evolutionary com

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

reply networks exhibit assortativity with respect to happiness, Journal of Computational Science =

- Liben-Nowell & Kleinberg (2007) author collaboration networks (N ∝ 10³)
- Use similarity indices to rank the most likely occurring top N links

Background Data Reciprocal reply netwo Link prediction Similarity indices Evolutionary computati Results

- Liben-Nowell & Kleinberg (2007) author collaboration networks (N ∝ 10³)
- ► Use similarity indices to rank the most likely occurring top N links $C(u,v) = |\Gamma(u) \cap \Gamma(v)|$

Similarity indices

- Liben-Nowell & Kleinberg (2007) author collaboration networks (N ∝ 10³)
- ► Use similarity indices to rank the most likely occurring top N links $C(u,v) = |\Gamma(u) \cap \Gamma(v)|$

Background Data Reciprocal reply netwo Link prediction Similarity indices Evolutionary computati Results Conclusions

Data Recip

- Liben-Nowell & Kleinberg (2007) author collaboration networks (N ∝ 10³)
- ► Use similarity indices to rank the most likely occurring top *N* links $C(u,v) = |\Gamma(u) \cap \Gamma(v)|$

$$R(u,v) = \sum_{z \in \Gamma(u) \cap \Gamma(v)} \frac{1}{|\Gamma(z)|}$$

Data Recipi

Similarity indices

Resource Allocation (Zhou, Lu, & Zhang, 2009)

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ● ● ● ●

Similarity indices

- Liben-Nowell & Kleinberg (2007) author collaboration networks (N ∝ 10³)
- Use similarity indices to rank the most likely occurring top N links C(u, v) = |Γ(u) ∩ Γ(v)|

$$R(u, v) = \sum_{z \in \Gamma(u) \cap \Gamma(v)} \frac{1}{|\Gamma(z)|}$$
$$W(u, v) = 1 - \frac{1}{2} \sum |f_{u,n} - f_{v,n}|$$

Background Data Reciprocal reply netwo Link prediction Similarity indices Evolutionary computati Results Conclusions

Common neighbors	$C(u,v) = \Gamma(u) \cap \Gamma(v) $	Background
Jacard	$J(u,v) = \frac{ \Gamma(u) \cap \Gamma(v) }{ \Gamma(u) \cup \Gamma(v) }$	Data Beciprocal reply networks
Adamic-Adar	$A(u,v) = \sum_{z \in (v,v) \in \Gamma(v)} \frac{1}{\log(\Gamma(z))}$	Link prodiction
Pref Attachment	$Pr(u,v) = k_{u} \times k_{v}$	Similarity indices
Hub promoted	$Hp(x,y) = \frac{ \Gamma(u) \cap \Gamma(v) }{\min\{k_{U}, k_{V}\}}$	Desults
Hub depressed	$Hd(u,v) = \frac{ \Gamma(u) \cap \Gamma(v) }{\max\{k_u, k_v\}}$	Conclusions
LHN	$L(u,v) = \frac{ \Gamma(u) \cap \Gamma(v) }{k_U k_V}$	Contractorio
Salton	$Sa(u,v) = \frac{ \Gamma(u) \cap \Gamma(v) }{\sqrt{k_U k_V}}$	
Sorenson	$So(u,v) = \frac{2 \Gamma(u)\cap\Gamma(v) }{k_U+k_V}$	
Resource Allocation	$R(u,v) = \sum_{z \in \Gamma(u) \cap \Gamma(v)} \frac{1}{ \Gamma(z) }$	
Average Path Weight	$P(u,v) = \frac{\sum\limits_{\substack{p \in \mathcal{P}_2(u,v) \cup \mathcal{P}_3(u,v)}} w_p}{ \mathcal{P}_2(u,v) + \mathcal{P}_3(u,v) }$	
Katz	$\mathcal{K} = \sum_{n=1}^{\infty} \beta^n A^n$	
Tweet count similarity	$T(u,v) = 1 - \frac{ T(u) - T(v) }{\max\{ T(a) - T(b) \}}_{a,b \in V}$	
Word similarity	$W(u,v) = 1 - \frac{1}{2} \sum_{n=1}^{50000} f_{u,n} - f_{v,n} $	
Happiness similarity	$H(u, v) = 1 - \frac{ h(u) - h(v) }{\max\{ h(a) - h(b) \}_{a, b \in V}}$	
ld similarity	$I(u, v) = 1 - \frac{ Id(u) - Id(v) }{\max\{ Id(a) - Id(b) \}_{a, b \in V}}$	
	(日)	

CMA-ES implementation²

Individual An individual or candidate solution is a vector, $\vec{w} \in \mathbf{R}^{16}$. A C P Hd Hp Sa So ĸ н R w Pr L 4 .9 .5 .8 .3 2 .01 .6 .2 .04 .8 .1 -.1

CMA-ES implementation²

²Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J.A. Lozano, P. Larrañga, I. Inza and E. Bengoetxea (eds.). Towards a new evolutionary computation. Advances in estimation of distribution algorithms. pp. 75-102, Springer.

CMA-ES implementation²

Individual	⇒	Reproduction & Mutation		Population
An individual or candidate solution is a vector, $\vec{w} \in \mathbf{R}^{16}$.		CMA-ES From 1 individual, generate a Gaussian cloud of candidate colutions in P ¹⁶ using		A population consists of several candidate solutions (vectors in R^{16}).
		the covariance matrix.		
Selection	-	Evaluate fitness		
The candidate solution with the best performance (min. fitness) suprives		$S = \sum_{i=1}^{16} w_i S_i .$	Noo sco nev	de-node pairs w/top res in S are predicted . v links.
selection.			Fitn	ess=# incorrect links # predicted links

²Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J.A. Lozano, P. Larrañga, I. Inza and E. Bengoetxea (eds.). Towards a new evolutionary computation. Advances in estimation of distribution algorithms. pp. 75-102, Springer.

Receiver Operating Curve

Precision

Precision depicts $\frac{TP}{TP+FP}$. High precision is achieved for top N < 20, which is often the region of interest. The precision for predicted links in $W4 \rightarrow W5'$ is lower than the other weeks and this may be due to missing data for those weeks

Conclusions

- Evolutionary algorithms show promise
- Many additional questions in link prediction (e.g., prediction of weights, prediction of link decay)
- Leveraging link prediction to understand network dynamics
- Further investigation of the role of incomplete data on network inference

Thank you

- Manuscript: In press at the Journal of Computational Science. Pre-print available at http://arxiv.org/abs/1304.6257
- Contact: www.cems.uvm.edu/~cabliss
- Lab: www.onehappybird.com

Conclusions

・ロト・日本・ヨト・ヨー うへで

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?