AP Statistics Curriculum 2007 Infer 2Means Indep
From Socr
m (→Large Samples: typo) |
(added a new section on Detailed specifications for independent-sample design studies) |
||
Line 124: | Line 124: | ||
<hr> | <hr> | ||
+ | |||
+ | ===Detailed specifications for independent-sample design studies=== | ||
+ | There are several different situations that arise in studies involving independent samples inference. These cases are separated by whether the sample sizes are equal and the sample variances (approximately) '''equivalent''' (i.e., <math>\frac{\sigma_1}{2}\le \sigma_2 \le 2\sigma_1</math>). The table below illustrates the differences in the statistical inference in each of these situations. This table uses the following notation: | ||
+ | : Indexes 1 and 2 denote group one and group two, respectively | ||
+ | : ''T'' is the test statistics | ||
+ | : ''S'' is the standard error of the difference between two means | ||
+ | : df = degrees of freedom | ||
+ | : <math>n_1</math> and <math>n_2</math> are the number of observations in each group. | ||
+ | <center> | ||
+ | {| class="wikitable" style="text-align:center; width:55%" border="1" | ||
+ | |- | ||
+ | ! colspan="2" rowspan="2"|Design || colspan="2"|Sample Size | ||
+ | |- | ||
+ | ! Equal || Unequal (different) | ||
+ | |- | ||
+ | | rowspan="2"|Population Variance || Equivalent || | ||
+ | <math>T = \frac{\bar {X}_1 - \bar{X}_2}{S_{X_1X_2} \cdot \sqrt{\frac{2}{n}}}</math> | ||
+ | where | ||
+ | <math>\ S_{X_1X_2} = \sqrt{\frac{1}{2}(S_{X_1}^2+S_{X_2}^2)}</math> is the [http://en.wikipedia.org/wiki/Pooled_standard_deviation pooled standard deviation] and df =2<math>n_1</math>−2 | ||
+ | || | ||
+ | <math>T = \frac{\bar {X}_1 - \bar{X}_2}{S_{X_1X_2} \cdot \sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}</math>, where <math> S_{X_1X_2} = \sqrt{\frac{(n_1-1)S_{X_1}^2+(n_2-1)S_{X_2}^2}{n_1+n_2-2}}</math>, <math>S_{X_1X_2}</math> is an estimator of the common standard deviation of the two samples, df=''n''<sub>1</sub> + ''n''<sub>2</sub> − 2 | ||
+ | |- | ||
+ | | Non-equivalent (different) || colspan="2"| | ||
+ | <math>T = {\overline{X}_1 - \overline{X}_2 \over s_{\overline{X}_1 - \overline{X}_2}}</math>, where <math>s_{\overline{X}_1 - \overline{X}_2} = \sqrt{{s_1^2 \over n_1} + {s_2^2 \over n_2}} | ||
+ | </math> (not a pooled variance), <math> \mathrm{df} = \frac{(s_1^2/n_1 + s_2^2/n_2)^2}{(s_1^2/n_1)^2/(n_1-1) + (s_2^2/n_2)^2/(n_2-1)}</math>, which is called the [http://en.wikipedia.org/wiki/Welch%E2%80%93Satterthwaite_equation Welch–Satterthwaite equation] | ||
+ | |} | ||
+ | </center> | ||
===[[EBook_Problems_Infer_2Means_Indep|Problems]]=== | ===[[EBook_Problems_Infer_2Means_Indep|Problems]]=== |
Revision as of 20:36, 2 March 2011
Contents |
General Advance-Placement (AP) Statistics Curriculum - Inferences about Two Means: Independent Samples
In the previous section we discussed the inference on two paired random samples. Now, we show how to do inference on two independent samples.
Indepenent Samples Designs
Independent samples designs refer to design of experiments or observations where all measurements are individually independent from each other within their groups and the groups are independent. The groups may be drawn from different populations with different distribution characteristics.
Background
- Recall that for a random sample {} of the process, the population mean may be estimated by the sample average, .
- The standard error of is given by .
Analysis Protocol for Independent Designs
To study independent samples, we would like to examine the differences between two group means. Suppose {} and {} represent the two independent samples. Then we want to study the differences of the two group means relative to the internal sample variations. If the two samples were drawn from populations that had different centers, then we would expect that the two sample averages will be distinct.
Large Samples
- Significance Testing: We have a standard null-hypothesis H_{o}:μ_{X} − μ_{Y} = μ_{o} (e.g., μ_{o} = 0). Then the test statistics is:
- .
- Confidence Intervals: (1 − α)100% confidence interval for μ_{1} − μ_{2} will be
- . Note that the , as the samples are independent. Also, is the critical value for a Standard Normal distribution at .
Small Samples
- Significance Testing: Again, we have a standard null-hypothesis H_{o}:μ_{X} − μ_{Y} = μ_{o} (e.g., μ_{o} = 0). Then the test statistics is:
- .
- The degrees of freedom (df) is: Always round down the degrees of freedom to the next smaller integer.
- Confidence Intervals: (1 − α)100% confidence interval for μ_{1} − μ_{2} will be
- . Note that the , as the samples are independent.
- The degrees of freedom is: Always round down the degrees of freedom to the next smaller integer. Also, is the critical value for a Student's T distribution at .
Example
Nine observations of surface soil pH were made at two different locations. Does the data suggest that the true mean soil pH values differs for the two locations? Formulate testable hypothesis and make inference about the effect of the treatment at α = 0.05. Check any necessary assumptions for the validity of your test.
Data in row format
Location 1 | 8.1,7.89,8,7.85,8.01,7.82,7.99,7.8,7.93 |
Location 2 | 7.85,7.3,7.73,7.27,7.58,7.27,7.5,7.23,7.41 |
Data in column format
Index | Location 1 | Location 2 |
---|---|---|
1 | 8.10 | 7.85 |
2 | 7.89 | 7.30 |
3 | 8.00 | 7.73 |
4 | 7.85 | 7.27 |
5 | 8.01 | 7.58 |
6 | 7.82 | 7.27 |
7 | 7.99 | 7.50 |
8 | 7.80 | 7.23 |
9 | 7.93 | 7.41 |
Mean | 7.9322 | 7.4600 |
SD | 0.1005 | 0.2220 |
Exploratory Data Analysis
We begin first by exploring the data visually using various SOCR EDA Tools.
- Line Chart of the two samples
- Box-And-Whisker Plot of the two samples
Inference
- Null Hypothesis: H_{o}:μ_{1} − μ_{2} = 0
- (Two-sided) alternative Research Hypotheses: .
- Test statistics: We can use the sample summary statistics to compute the degrees of freedom and the T-statistic
- The degrees of freedom is: So, we round down df=11.
- .
- p − value = P(T_{(df = 11)} > T_{o} = 5.829) = 0.00003 for this (two-sided) test. Therefore, we can reject the null hypothesis at α = 0.05! The left white area at the tails of the T(df=11) distribution depicts graphically the probability of interest, which represents the strength of the evidence (in the data) against the Null hypothesis. In this case, this area is 0.00003, which is much smaller than the initially set Type I error α = 0.05 and we reject the null hypothesis.
- You can also use the SOCR Analyses (Two-Independent Samples T-Test) to carry out these calculations as shown in the figure below.
- This SOCR Two-Sample Independent T-test Activity provides additional hands-on demonstrations of the two-sample hypothesis testing.
- 95% = (1 − 0.05)100% (α = 0.05) Confidence interval:
- CI(μ_{1} − μ_{2}):
Conclusion
These data show that there is a statistically significant mean difference in the pH of Location 1 and Location 2 (p < 0.001).
Independent T-test Validity
Both the confidence intervals and the hypothesis testing methods in the independent-sample design require Normality of both samples. If the sample sizes are large (say >50), Normality is not as critical, as the CLT implies the sampling distributions of the means are approximately Normal. If these parametric assumptions are invalid we must use a non-parametric (distribution free test), even if the latter is less powerful.
The plots below indicate that Normal assumptions are not unreasonable for these data, and hence we may be justified in using the two independent sample T-tests in this case.
- QQ-Normal plot of the first sample:
- QQ-Normal plot of the second sample:
Detailed specifications for independent-sample design studies
There are several different situations that arise in studies involving independent samples inference. These cases are separated by whether the sample sizes are equal and the sample variances (approximately) equivalent (i.e., ). The table below illustrates the differences in the statistical inference in each of these situations. This table uses the following notation:
- Indexes 1 and 2 denote group one and group two, respectively
- T is the test statistics
- S is the standard error of the difference between two means
- df = degrees of freedom
- n_{1} and n_{2} are the number of observations in each group.
Design | Sample Size | ||
---|---|---|---|
Equal | Unequal (different) | ||
Population Variance | Equivalent |
where is the pooled standard deviation and df =2n_{1}−2 |
, where , is an estimator of the common standard deviation of the two samples, df=n_{1} + n_{2} − 2 |
Non-equivalent (different) |
, where (not a pooled variance), , which is called the Welch–Satterthwaite equation |
Problems
- SOCR Home page: http://www.socr.ucla.edu
Translate this page: